

    
      
          
            
  
ElectrumX

[image: _images/electrumx.svg]
 [https://travis-ci.org/kyuupichan/electrumx][image: _images/badge.svg]
 [https://coveralls.io/github/kyuupichan/electrumx]A reimplementation of Electrum-Server for a future with bigger blocks.

The current version is ElectrumX 1.15.0.


Source Code

The project is hosted on GitHub [https://github.com/kyuupichan/electrumx/].  and uses Travis [https://travis-ci.org/kyuupichan/electrumx] for Continuous
Integration.

Please submit an issue on the bug tracker [https://github.com/kyuupichan/electrumx/issues] if you have found a
bug or have a suggestion to improve the server.




Authors and License

Neil Booth wrote the vast majority of the code; see Authors.
Python version at least 3.7 is required.

The code is released under the MIT Licence [https://github.com/kyuupichan/electrumx/LICENCE].




Getting Started

See HOWTO.

There is also an installer [https://github.com/bauerj/electrumx-installer] available that simplifies the
installation on various Linux-based distributions, and a Dockerfile [https://github.com/lukechilds/docker-electrumx]
available .




Documentation



	Features

	Implementation

	Roadmap

	ChangeLog
	Version 1.15.0 (27 May 2020)

	Version 1.14.0 (19 Jan 2020)

	Version 1.13.0 (26 Sep 2019)

	Version 1.12.0 (13 May 2019)

	Version 1.11.0 (18 Apr 2019)

	Version 1.10.1 (13 Apr 2019)

	Version 1.10.0 (15 Mar 2019)

	Version 1.9.5 (08 Feb 2019)

	Version 1.9.4 (07 Feb 2019)

	Version 1.9.3 (05 Feb 2019)

	Version 1.9.2 (03 Feb 2019)

	Version 1.9.1 (11 Jan 2019)

	Version 1.9.0 (10 Jan 2019)





	HOWTO
	Prerequisites

	Database Engine

	Running
	Process limits

	Using daemontools

	Using systemd

	Installing on Raspberry Pi 3





	Sync Progress

	Terminating ElectrumX

	Understanding the Logs

	Creating a self-signed SSL certificate

	Running on a privileged port





	Environment Variables
	Required

	For the run script

	Services

	Miscellaneous

	Resource Usage Limits

	Peer Discovery

	Cache





	Electrum Protocol
	Protocol Basics
	Message Stream

	Notifications

	Version Negotiation

	Script Hashes

	Status

	Block Headers





	Protocol Methods
	blockchain.block.header

	blockchain.block.headers

	blockchain.estimatefee

	blockchain.headers.subscribe

	blockchain.relayfee

	blockchain.scripthash.get_balance

	blockchain.scripthash.get_history

	blockchain.scripthash.get_mempool

	blockchain.scripthash.listunspent

	blockchain.scripthash.subscribe

	blockchain.scripthash.unsubscribe

	blockchain.transaction.broadcast

	blockchain.transaction.get

	blockchain.transaction.get_merkle

	blockchain.transaction.id_from_pos

	mempool.get_fee_histogram

	server.add_peer

	server.banner

	server.donation_address

	server.features

	server.peers.subscribe

	server.ping

	server.version

	Masternode methods (Dash and compatible coins)

	masternode.announce.broadcast

	masternode.subscribe

	masternode.list

	ProTx methods (Dash DIP3)

	protx.diff

	protx.info





	Protocol Changes
	Version 1.0
	Deprecated methods





	Version 1.1
	Changes

	New methods

	Removed methods





	Version 1.2
	Changes

	New methods

	Deprecated methods





	Version 1.3
	Changes

	New methods

	Removed methods

	Deprecated methods





	Version 1.4
	Changes

	New methods

	Removed methods





	Version 1.4.1
	Changes





	Version 1.4.1
	New methods









	Removed Protocol Methods
	Deserialized Headers
	blockchain.address.get_balance

	blockchain.address.get_history

	blockchain.address.get_mempool

	blockchain.address.listunspent

	blockchain.address.subscribe

	blockchain.headers.subscribe

	blockchain.numblocks.subscribe

	blockchain.utxo.get_address

	blockchain.block.get_header

	blockchain.block.get_chunk

	server.version









	Protocol Ideas
	blockchain.scripthash.subscribe

	blockchain.scripthash.history

	blockchain.scripthash.utxos

	blockchain.transaction.get

	mempool.changes









	Peer Discovery
	Hard-coded Peers

	server.peers.subscribe

	Maintaining the Peer Database

	server.features

	server.add_peer

	Notes for Implementors





	RPC Interface
	add_peer

	daemon_url

	disconnect

	getinfo

	groups

	log

	peers

	query

	reorg

	sessions

	stop





	Architecture
	Env

	Controller

	LocalRPC

	ElectrumX

	Daemon

	Block Processor

	Prefetcher

	Mempool

	Database





	Authors








Indices and tables


	Index


	Search Page










          

      

      

    

  

    
      
          
            
  
Features


	Efficient, lightweight reimplementation of electrum-server


	Fast synchronization of bitcoin mainnet from Genesis.  Recent
hardware should synchronize in well under 24 hours.  The fastest
time to height 448k (mid January 2017) reported is under 4h 30m.  On
the same hardware JElectrum would take around 4 days and
electrum-server probably around 1 month.


	Various configurable means of controlling resource consumption and
handling bad clients and denial of service attacks.  These include
maximum connection counts, subscription limits per-connection and
across all connections, maximum response size, per-session bandwidth
limits, and session timeouts.


	Minimal resource usage once caught up and serving clients; tracking the
transaction mempool appears to be the most expensive part.


	Mostly asynchronous processing of new blocks, mempool updates, and
client requests.  Busy clients should not noticeably impede other
clients’ requests and notifications, nor the processing of incoming
blocks and mempool updates.


	Daemon failover.  More than one daemon can be specified, and
ElectrumX will failover round-robin style if the current one fails
for any reason.


	Peer discovery protocol removes need for IRC


	Coin abstraction makes compatible altcoin and testnet support easy.







Implementation

ElectrumX does not do any pruning or throwing away of history.  I want
to retain this property for as long as it is feasible, and it appears
efficiently achievable for the foreseeable future with plain Python.

The following all play a part in making it efficient as a Python
blockchain indexer:


	aggressive caching and batching of DB writes


	more compact and efficient representation of UTXOs, address index,
and history.  Electrum Server stores full transaction hash and
height for each UTXO, and does the same in its pruned history.  In
contrast ElectrumX just stores the transaction number in the linear
history of transactions.  For at least another 5 years this
transaction number will fit in a 4-byte integer, and when necessary
expanding to 5 or 6 bytes is trivial.  ElectrumX can determine block
height from a simple binary search of tx counts stored on disk.
ElectrumX stores historical transaction hashes in a linear array on
disk.


	placing static append-only metadata indexable by position on disk
rather than in levelDB.  It would be nice to do this for histories
but I cannot think of a way.


	avoiding unnecessary or redundant computations, such as converting
address hashes to human-readable ASCII strings with expensive bignum
arithmetic, and then back again.


	better choice of Python data structures giving lower memory usage as
well as faster traversal


	leveraging asyncio for asynchronous prefetch of blocks to mostly
eliminate CPU idling.  As a Python program ElectrumX is unavoidably
single-threaded in its essence; we must keep that CPU core busy.




Python’s asyncio means ElectrumX has no (direct) use for threads
and associated complications.




Roadmap


	break ElectrumX up into simple services that initially can be run in
separate processes on a single host.  Then support running them on
different hosts, and finally support sharding.  With this we can
take advantage of multiple cores and hosts, and scale to much larger
block sizes.  This should solve several issues with the current
history storage mechanism.


	fully asynchronous operation.  At present too much is synchronous, such
as file system access.


	protocol improvements targeting better client and server scalability
to large wallets (100k addresses) and address histories.  Some
aspects of the current protocol are very inefficient.


	investigate speaking the Bitcoin protocol and connecting to the
Bitcoin network directly for some queries.  This could lead to
ElectrumX being runnable with a node without a tx index, or a
pruning node, or not needing to run a node at all.  ElectrumX would
store all blocks itself and index the transactions therein.


	lifting internal limits such as maximum 4 billion transactions


	supporting better user privacy.  I believe significantly improved
user address privacy might be possible with a simple addition to the
protocol, and assuming a server network of which a reasonable
fraction (40%?) are cooperative and non-colluding


	new features such as possibly adding label or wallet server
functionality








          

      

      

    

  

    
      
          
            
  
ChangeLog


Note

Version 1.15.0 will be the final ElectrumX release with altcoin support, future
releases will be Bitcoin-only.  ElectrumX needs to scale quickly and support for
various other coins and their idiosyncracies is distracting and unhelpful.  Anyone
wishing to maintain an ElectrumX repository with altcoin support is free to do so as
explained in the licence.




Note

It is strongly recommended you upgrade to Python 3.7, which
fixes bugs in asyncio that caused an ever-growing open file count
and memory consumption whilst serving clients.  Those problems
should not occur with Python 3.7.




Version 1.15.0 (27 May 2020)


	switch to 5-byte txnums to handle larger blockchains.  Upgrade DBs during restart.


	accurate clearing of stale caches


	coin additions / updates: NavCoin + Hush + VersusCoin + Zero (cipig), DashRegtest (colmenero),
Quebecoin (morinpa), Primecoin (Sunny King), multiple (Panagiotis David), RVN (standard-error),
Sumcoin


	other: Jeremy Rand, Jin Eguchi, ddude, Jonathan Cross, Carsen Klock, cipig







Version 1.14.0 (19 Jan 2020)


	require Python 3.7


	support for Bitcoin SV Genesis activation


	DB upgrade to allow for larger transactions.  Your DB will automatically upgrade when
starting, the upgrade should take approximately 15 mintues.


	fix server shutdown process


	fix cache race condition (issue #909 [https://github.com/kyuupichan/electrumx/issues/909])


	faster initial sync


	coin additions / updates: Emercoin (yakimka), Feathercoin (wellenreiter01),
Peercoin (peerchemist), Namecoin (JeremyRand), Zcoin (a-bezrukov), Simplicity,
Mice (ComputerCraftr), Sibcoin testnet (TriKriSta), Odin (Manbearpixel),


	other: h2o10, osagga, Sombernight, breign, pedr0-fr, wingsuit







Version 1.13.0 (26 Sep 2019)


	daemon: use a single connection for all requests rather than a connection per request.
Distinguish handling of JSON and HTTP errors


	recognise OP_FALSE OP_RETURN scripts as unspendable


	peers - attempt to bind to correct local IP address


	improve name support (domob1812)


	coin additions / updates: BitZeny (y-chan), ZCoin (a-bezrukov), Emercoin (yakimka),
BSV (Roger Taylor), Bellcoin (streetcrypto7), Ritocoin (traysi), BTC (Sombernight),
PIVX (mrcarlanthony), Monacoin (wakiyamap)), NamecoinRegtest (JeremyRand), Axe (ddude1),
Xaya (domob1812), GZRO (MrNaif2018), Ravencoin (standard-error)


	other: gits7r







Version 1.12.0 (13 May 2019)


	require aiorpcX 0.18.1.  This introduces websocket support.  The environment variables
changed accordingly; see SERVICES and REPORT_SERVICES.


	work around bug in recent versions of uvloop


	aiorpcX upgrade fixes from Shane M


	coin additions / updates: BitcoinSV, Bolivarcoin (Jose Luis Estevez), BTC Testnet (ghost43),
Odin (Pixxl)







Version 1.11.0 (18 Apr 2019)


	require aiorpcX 0.15.x


	require aiohttp 3.3 or higher; earlier versions had a problematic bug


	add REQUEST_TIMEOUT and LOG_LEVEL environment variables


	mark 4 old environment variables obsolete.  ElectrumX won’t start until they are removed


	getinfo local RPC cleaned up and shows more stats


	miscellaneous fixes and improvements


	more efficient handling of some RPC methods, particularly
blockchain.transaction.get_merkle()


	coin additions / updates: BitcoinSV scaling testnet (Roger Taylor), Dash (zebra lucky),


	issues resolved: #566 [https://github.com/kyuupichan/electrumx/issues/566], #731 [https://github.com/kyuupichan/electrumx/issues/731], #795 [https://github.com/kyuupichan/electrumx/issues/795]







Version 1.10.1 (13 Apr 2019)


	introduce per-request costing.  See environment variables documentation for new
variables COST_SOFT_LIMIT, COST_HARD_LIMIT, REQUEST_SLEEP,
INITIAL_CONCURRENT, BANDWIDTH_UNIT_COST.  Sessions are placed in groups
with which they share some of their costs.  Prior cost is remembered across reconnects.


	require aiorpcX 0.13.5 for better concurrency handling


	require clients use protocol 1.4 or higher


	handle transaction.get_merkle requests more efficiently (ghost43)


	Windows support (sancoder)


	peers improvements (ghost43)


	report mempool and block sizes in logs


	electrumx_rpc: timeout raised to 30s, fix session request counts


	other tweaks and improvements by Bjorge Dijkstra, ghost43, peleion,


	coin additions / updates: ECA (Jenova7), ECCoin (smogm), GXX (DEVCØN), BZX (2INFINITY),
DeepOnion (Liam Alford), CivX / EXOS (turcol)







Version 1.10.0 (15 Mar 2019)


	extra countermeasures to limit BTC phishing effectiveness (ghost43)


	peers: mark blacklisted peers bad; force retry blacklisted peers (ghost43)


	coin additions / updates: Monacoin (wakiyamap), Sparks (Mircea Rila), ColossusXT,
Polis, MNPCoin, Zcoin, GINCoin (cronos), Grosetlcoin (gruve-p), Dash (konez2k),
Bitsend (David), Ravencoin (standard-error), Onixcoin (Jose Estevez), SnowGem


	coin removals: Gobyte, Moneci (cronos)


	minor tweaks by d42


	issues fixed #660 [https://github.com/kyuupichan/electrumx/issues/660] - unclean shutdowns during initial sync







Version 1.9.5 (08 Feb 2019)


	server blacklist logic (ecdsa)


	require aiorpcX 0.10.4


	remove dead wallet code


	fix #727 [https://github.com/kyuupichan/electrumx/issues/727] - not listing same peer twice







Version 1.9.4 (07 Feb 2019)


	require aiorpcX 0.10.3


	fix #713 [https://github.com/kyuupichan/electrumx/issues/713]







Version 1.9.3 (05 Feb 2019)


	ignore potential sybil peers


	coin additions / updates: BitcoinCashABC (cculianu), Monacoin (wakiyamap)







Version 1.9.2 (03 Feb 2019)


	restore protocol version 1.2 and send a warning for old BTC Electrum clients that they
need to upgrade.  This is an attempt to protect users of old versions of Electrum from
the ongoing phishing attacks


	increase default MAX_SEND for AuxPow Chains.  Truncate AuxPow for block heights covered
by a checkpoint.  (jeremyrand)


	coin additions / updates: NMC (jeremyrand), Dash (zebra-lucky), PeerCoin (peerchemist),
BCH testnet (Mark Lundeberg), Unitus (ChekaZ)


	tighter RPC param checking (ghost43)







Version 1.9.1 (11 Jan 2019)


	fix #684 [https://github.com/kyuupichan/electrumx/issues/684]







Version 1.9.0 (10 Jan 2019)


	minimum protocol version is now 1.4


	coin additions / updates: BitcoinSV, SmartCash (rc125), NIX (phamels), Minexcoin (joesixpack),
BitcoinABC (mblunderburg), Dash (zebra-lucky), BitcoinABCRegtest (ezegom), AXE (slowdive),
NOR (flo071), BitcoinPlus (bushsolo), Myriadcoin (cryptapus), Trezarcoin (ChekaZ),
Bitcoin Diamond (John Shine),


	close #554 [https://github.com/kyuupichan/electrumx/issues/554], #653 [https://github.com/kyuupichan/electrumx/issues/653], #655 [https://github.com/kyuupichan/electrumx/issues/655]


	other minor tweaks (Michael Schmoock, Michael Taborsky)




Neil Booth  kyuupichan@gmail.com  https://github.com/kyuupichan







          

      

      

    

  

    
      
          
            
  
HOWTO


Prerequisites

ElectrumX should run on any flavour of unix.  I have run it
successfully on MacOS and DragonFlyBSD.  It won’t run out-of-the-box
on Windows, but the changes required to make it do so should be
small - pull requests are welcome.







	Package

	Notes





	Python3

	ElectrumX uses asyncio.  Python version >= 3.7 is
required.



	aiohttp [https://pypi.python.org/pypi/aiohttp]

	Python library for asynchronous HTTP.  Version >=
2.0 required.



	pylru [https://pypi.python.org/pypi/pylru]

	Python LRU cache package.



	DB Engine

	A database engine package is required; two are
supported (see Database Engine below).






Some coins need an additional package, typically for their block hash
functions.  For example, x11_hash [https://pypi.python.org/pypi/x11_hash] is required for DASH.

You must to be running a non-pruning bitcoin daemon with:

txindex=1





set in its configuration file.  If you have an existing installation
of bitcoind and have not previously set this you will need to reindex
the blockchain with:

bitcoind -reindex





which can take some time.

While not a requirement for running ElectrumX, it is intended to be
run with supervisor software such as Daniel Bernstein’s
daemontools [http://cr.yp.to/daemontools.html], Gerrit Pape’s runit [http://smarden.org/runit/index.html] package or systemd.
These make administration of secure unix servers very easy, and I
strongly recommend you install one of these and familiarise yourself
with them.  The instructions below and sample run scripts assume
daemontools; adapting to runit should be trivial for someone
used to either.

When building the database from the genesis block, ElectrumX has to
flush large quantities of data to disk and its DB.  You will have a
better experience if the database directory is on an SSD than on an
HDD.  Currently to around height 611,600 of the Bitcoin blockchain the
final size of the leveldb database, and other ElectrumX file metadata
comes to just over 46.9GB (43.7 GiB).  LevelDB needs a bit more for
brief periods, and the block chain is only getting longer, so I would
recommend having at least 70-80GB of free space before starting.




Database Engine

You can choose from LevelDB and RocksDB to store transaction
information on disk.  The time taken and DB size is not significantly
different.  We tried to support LMDB but its history write performance
was much worse.

You will need to install one of:


	plyvel [https://plyvel.readthedocs.io/en/latest/installation.html] for LevelDB


	python-rocksdb [https://pypi.python.org/pypi/python-rocksdb] for RocksDB (pip3 install python-rocksdb)


	pyrocksdb [http://pyrocksdb.readthedocs.io/en/v0.4/installation.html] for an unmaintained version that doesn’t work with recent releases of RocksDB







Running

Install the prerequisites above.

Check out the code from Github:

git clone https://github.com/kyuupichan/electrumx.git
cd electrumx





You can install with setup.py or run the code from the source
tree or a copy of it.

You should create a standard user account to run the server under;
your own is probably adequate unless paranoid.  The paranoid might
also want to create another user account for the daemontools logging
process.  The sample scripts and these instructions assume it is all
under one account which I have called electrumx.

Next create a directory where the database will be stored and make it
writeable by the electrumx account.  I recommend this directory
live on an SSD:

mkdir /path/to/db_directory
chown electrumx /path/to/db_directory






Process limits

You must ensure the ElectrumX process has a large open file limit.
During sync it should not need more than about 1,024 open files.  When
serving it will use approximately 256 for LevelDB plus the number of
incoming connections.  It is not unusual to have 1,000 to 2,000
connections being served, so I suggest you set your open files limit
to at least 2,500.

Note that setting the limit in your shell does NOT affect ElectrumX
unless you are invoking ElectrumX directly from your shell.  If you
are using systemd, you need to set it in the
.service file (see contrib/systemd/electrumx.service [https://github.com/kyuupichan/electrumx/blob/master/contrib/systemd/electrumx.service]).




Using daemontools

Next create a daemontools service directory; this only holds symlinks
(see daemontools documentation).  The svscan program will
ensure the servers in the directory are running by launching a
supervise supervisor for the server and another for its
logging process.  You can run svscan under the electrumx
account if that is the only one involved (server and logger) otherwise
it will need to run as root so that the user can be switched to
electrumx.

Assuming this directory is called service, you would do one
of:

mkdir /service       # If running svscan as root
mkdir ~/service      # As electrumx if running svscan as that a/c





Next create a directory to hold the scripts that the
supervise process spawned by svscan will run -
this directory must be readable by the svscan process.
Suppose this directory is called scripts, you might do:

mkdir -p ~/scripts/electrumx





Then copy the all sample scripts from the ElectrumX source tree there:

cp -R /path/to/repo/electrumx/contrib/daemontools ~/scripts/electrumx





This copies 3 things: the top level server run script, a log/
directory with the logger run script, an env/
directory.

You need to configure the environment variables
under env/ to your setup.  ElectrumX server currently takes no
command line arguments; all of its configuration is taken from its
environment which is set up according to env/ directory (see
envdir man page).  Finally you need to change the
log/run script to use the directory where you want the logs
to be written by multilog.  The directory need not exist as
multilog will create it, but its parent directory must
exist.

Now start the svscan process.  This will not do much as the
service directory is still empty:

svscan ~/service & disown





svscan is now waiting for services to be added to the directory:

cd ~/service
ln -s ~/scripts/electrumx electrumx





Creating the symlink will kick off the server process almost immediately.
You can see its logs with:

tail -F /path/to/log/dir/current | tai64nlocal








Using systemd

This repository contains a sample systemd unit file that you can use
to setup ElectrumX with systemd. Simply copy it to
/etc/systemd/system:

cp contrib/systemd/electrumx.service /etc/systemd/system/





The sample unit file assumes that the repository is located at
/home/electrumx/electrumx. If that differs on your system, you
need to change the unit file accordingly.

You need to set a few environment variables in
/etc/electrumx.conf.

Now you can start ElectrumX using systemctl:

systemctl start electrumx





You can use journalctl to check the log output:

journalctl -u electrumx -f





Once configured you may want to start ElectrumX at boot:

systemctl enable electrumx






Warning

systemd is aggressive in forcibly shutting down
processes.  Depending on your hardware, ElectrumX can need several
minutes to flush cached data to disk during initial sync.  You
should set TimeoutStopSec to at least 10 mins in your
.service file.






Installing on Raspberry Pi 3

To install on the Raspberry Pi 3 you will need to update to the
stretch distribution.  See the full procedure in
contrib/raspberrypi3/install_electrumx.sh [https://github.com/kyuupichan/electrumx/blob/master/contrib/raspberrypi3/install_electrumx.sh].

See also contrib/raspberrypi3/run_electrumx.sh [https://github.com/kyuupichan/electrumx/blob/master/contrib/raspberrypi3/run_electrumx.sh] for an easy way to
configure and launch electrumx.






Sync Progress

Time taken to index the blockchain depends on your hardware of course.
As Python is single-threaded most of the time only 1 core is kept
busy.  ElectrumX uses Python’s asyncio to prefill a cache of
future blocks asynchronously to keep the CPU busy processing the chain
without pausing.

Consequently there will probably be only a minor boost in performance
if the daemon is on the same host.  It may even be beneficial to have
the daemon on a separate machine so the machine doing the indexing
has its caches and disk I/O tuned to that task only.

The CACHE_MB environment variable controls the total cache
size ElectrumX uses; see here for caveats.

Here is my experience with the codebase of early 2017 (the current
codebase is faster), to given heights and rough wall-time.  The period
from heights 363,000 to 378,000 is the most sluggish:

               Machine A     Machine B
181,000          25m 00s      5m 30s
283,500                       1h 00m
321,800                       1h 40m
357,000          12h 32m      2h 41m
386,000          21h 56m      4h 25m
414,200       1d 12h 29m      6h 30m
447,168       2d 13h 20m      9h 47m





Machine A: a low-spec 2011 1.6GHz AMD E-350 dual-core fanless CPU,
8GB RAM and a DragonFlyBSD UFS filesystem on an SSD.  It requests
blocks over the LAN from a bitcoind on machine B.  DB_CACHE
the default of 1,200.  LevelDB.

Machine B: a late 2012 iMac running Sierra 10.12.2, 2.9GHz quad-core
Intel i5 CPU with an HDD and 24GB RAM.  Running bitcoind on the same
machine.  DB_CACHE set to 1,800.  LevelDB.

For chains other than bitcoin-mainnet synchronization should be much
faster.


Note

ElectrumX will not serve normal client connections until it
has fully synchronized and caught up with your daemon.
However LocalRPC connections are served at all times.






Terminating ElectrumX

The preferred way to terminate the server process is to send it the
stop RPC command:

electrumx_rpc stop





or alternatively on Unix the INT or TERM signals.  For a
daemontools supervised process this can be done by bringing it down
like so:

svc -d ~/service/electrumx





ElectrumX will note receipt of the signals in the logs, and ensure the
block chain index is flushed to disk before terminating.  You should
be patient as flushing data to disk can take many minutes.

ElectrumX uses the transaction functionality, with fsync enabled, of
the databases.  I have written it with the intent that, to the extent
the atomicity guarantees are upheld by the DB software, the operating
system, and the hardware, the database should not get corrupted even
if the ElectrumX process if forcibly killed or there is loss of power.
The worst case should be having to restart indexing from the most
recent UTXO flush.

Once the process has terminated, you can start it up again with:

svc -u ~/service/electrumx





You can see the status of a running service with:

svstat ~/service/electrumx





svscan can of course handle multiple services
simultaneously from the same service directory, such as a testnet or
altcoin server.  See the man pages of these various commands for more
information.




Understanding the Logs

You can see the logs usefully like so:

tail -F /path/to/log/dir/current | tai64nlocal





Here is typical log output on startup:

INFO:BlockProcessor:switching current directory to /crucial/server-good
INFO:BlockProcessor:using leveldb for DB backend
INFO:BlockProcessor:created new database
INFO:BlockProcessor:creating metadata diretcory
INFO:BlockProcessor:software version: ElectrumX 0.10.2
INFO:BlockProcessor:DB version: 5
INFO:BlockProcessor:coin: Bitcoin
INFO:BlockProcessor:network: mainnet
INFO:BlockProcessor:height: -1
INFO:BlockProcessor:tip: 0000000000000000000000000000000000000000000000000000000000000000
INFO:BlockProcessor:tx count: 0
INFO:BlockProcessor:sync time so far: 0d 00h 00m 00s
INFO:BlockProcessor:reorg limit is 200 blocks
INFO:Daemon:daemon at 192.168.0.2:8332/
INFO:BlockProcessor:flushing DB cache at 1,200 MB
INFO:Controller:RPC server listening on localhost:8000
INFO:Prefetcher:catching up to daemon height 447,187...
INFO:Prefetcher:verified genesis block with hash 000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
INFO:BlockProcessor:our height: 9 daemon: 447,187 UTXOs 0MB hist 0MB
INFO:BlockProcessor:our height: 52,509 daemon: 447,187 UTXOs 9MB hist 14MB
INFO:BlockProcessor:our height: 85,009 daemon: 447,187 UTXOs 12MB hist 31MB
INFO:BlockProcessor:our height: 102,384 daemon: 447,187 UTXOs 15MB hist 47MB
[...]
INFO:BlockProcessor:our height: 133,375 daemon: 447,187 UTXOs 80MB hist 222MB
INFO:BlockProcessor:our height: 134,692 daemon: 447,187 UTXOs 96MB hist 250MB
INFO:BlockProcessor:flushed to FS in 0.7s
INFO:BlockProcessor:flushed history in 16.3s for 1,124,512 addrs
INFO:BlockProcessor:flush #1 took 18.7s.  Height 134,692 txs: 941,963
INFO:BlockProcessor:tx/sec since genesis: 2,399, since last flush: 2,400
INFO:BlockProcessor:sync time: 0d 00h 06m 32s  ETA: 1d 13h 03m 42s





Under normal operation these cache stats repeat once or twice a
minute.  UTXO flushes can take several minutes and look like this:

INFO:BlockProcessor:our height: 378,745 daemon: 447,332 UTXOs 1,013MB hist 184MB
INFO:BlockProcessor:our height: 378,787 daemon: 447,332 UTXOs 1,014MB hist 194MB
INFO:BlockProcessor:flushed to FS in 0.3s
INFO:BlockProcessor:flushed history in 13.4s for 934,933 addrs
INFO:BlockProcessor:flushed 6,403 blocks with 5,879,440 txs, 2,920,524 UTXO adds, 3,646,572 spends in 93.1s, committing...
INFO:BlockProcessor:flush #120 took 226.4s.  Height 378,787 txs: 87,695,588
INFO:BlockProcessor:tx/sec since genesis: 1,280, since last flush: 359
INFO:BlockProcessor:sync t ime: 0d 19h 01m 06s  ETA: 3d 21h 17m 52s
INFO:BlockProcessor:our height: 378,812 daemon: 447,334 UTXOs 10MB hist 10MB





The ETA shown is just a rough guide and in the short term can be quite
volatile.  It tends to be a little optimistic at first; once you get
to height 280,000 is should be fairly accurate.




Creating a self-signed SSL certificate

These instructions are based on those of the electrum-server
documentation.

To run an SSL server you need to generate a self-signed certificate
using openssl.  Alternatively you could not set SSL_PORT in
the environment and not serve over SSL, but this is not recommended.

Use the sample code below to create a self-signed cert with a
recommended validity of 5 years. You may supply any information for
your sign request to identify your server.  They are not currently
checked by the client except for the validity date.  When asked for a
challenge password just leave it empty and press enter:

$ openssl genrsa -out server.key 2048
$ openssl req -new -key server.key -out server.csr
...
Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:California
Common Name (eg, YOUR name) []: electrum-server.tld
...
A challenge password []:
...
$ openssl x509 -req -days 1825 -in server.csr -signkey server.key -out server.crt





The server.crt file goes in SSL_CERTFILE and
server.key in SSL_KEYFILE in the server process’s
environment.

Starting with Electrum 1.9, the client will learn and locally cache
the SSL certificate for your server upon the first request to prevent
man-in-the middle attacks for all further connections.

If your certificate is lost or expires on the server side, you will
need to run your server with a different server name and a new
certificate.  Therefore it’s a good idea to make an offline backup
copy of your certificate and key in case you need to restore them.




Running on a privileged port

You may choose to run electrumx on a different port than 50001
/ 50002.  If you choose a privileged port ( < 1024 ) it makes sense to
make use of a iptables NAT rule.

An example, which will forward Port 110 to the internal port 50002 follows:

iptables -t nat -A PREROUTING -p tcp --dport 110 -j DNAT --to-destination 127.0.0.1:50002





You can then set the port as follows and advertise the service externally on the privileged port:

REPORT_SSL_PORT=110











          

      

      

    

  

    
      
          
            
  
Environment Variables

ElectrumX takes no command line arguments, instead its behaviour is controlled by
environment variables.  Only a few are required to be given, the rest will have sensible
defaults if not specified.  Many of the defaults around resource usage are conservative; I
encourage you to review them.


Note

set SERVICES appropriately to be able to connect to your server.  For
clients across the internet to know what services you offer you must advertize your
services with REPORT_SERVICES.




Required

These environment variables are always required:


	
COIN

	Must be a NAME from one of the Coin classes in
lib/coins.py [https://github.com/kyuupichan/electrumx/blob/master/electrumx/lib/coins.py].






	
DB_DIRECTORY

	The path to the database directory.  Relative paths should be
relative to the parent process working directory.  This is the
directory of the run script if you use it.






	
DAEMON_URL

	A comma-separated list of daemon URLs.  If more than one is provided
ElectrumX will initially connect to the first, and failover to
subsequent ones round-robin style if one stops working.

The generic form of a daemon URL is:

http://username:password@hostname:port/





The leading http:// is optional, as is the trailing slash.  The
:port part is also optional and will default to the standard RPC
port for COIN and NET if omitted.






Note

With the above set your server will run and index the chain.  To enable incoming
connections you must set SERVICES, and for others to be aware of your server
set REPORT_SERVICES.






For the run script

The following are required if you use the run script:


	
ELECTRUMX

	The path to the electrumx_server script.  Relative paths should
be relative to the directory of the run script.






	
USERNAME

	The username the server will run as.








Services

These two environment variables are comma-separated lists of individual services.

A service has the general form:

protocol://host:port





protocol is case-insensitive.  The recognised protocols are:

tcp    Plaintext TCP sockets
ssl    SSL-encrypted TCP sockets
ws     Plaintext websockets
wss    SSL-encrypted websockets
rpc    Plaintext RPC





In a services list, a protocol can be specified multiple times, with different hosts or
ports.  This might be useful for multi-homed hosts, or if you offer both Tor and clearnet
services.

host can be a hostname, an IPv4 address, or an IPv6 address enclosed in square brackets.

port is an integer from 1 to 65535 inclusive.

Where documented, one or more of protocol, host and port can be omitted, in which
case a default value will be assumed.

Here are some examples of valid services:

tcp://host.domain.tld:50001           # Hostname, lowercase protocol, port
SSL://23.45.67.78:50002               # An IPv4 address, upper-case protocol, port
rpC://localhost                       # Host as a string, mixed-case protocol, default port
ws://[1234:5678:abcd::5601]:8000      # Host as an IPv6 address
wss://h3ubaasdlkheryasd.onion:50001   # Host as a Tor ".onion" address
rpc://:8000                           # Default host, port given
host.domain.tld:5151                  # Default protocol, hostname, port
rpc://                                # RPC protocol, default host and port






Note

ElectrumX will not serve any incoming connections until it has fully caught up
with your bitcoin daemon.  The only exception is local RPC connections,
which are served at any time after the server has initialized.




	
SERVICES

	A comma-separated list of services ElectrumX will accept incoming connections for.

This environment variable determines what interfaces and ports the server listens on, so
must be set correctly for any connection to the server to succeed.  If unset or empty,
ElectrumX will not listen for any incoming connections.

protocol can be any recognised protocol.

host defaults to all of the machine’s interfaces, except if the protocol is rpc,
when it defaults to localhost.

port can only be defaulted for rpc where the default is 8000.

On most Unix systems ports below 1024 require elevated privileges so choosing a higher
port is advisable.  On Debian for example, this can be achieved by installing
libcap2-bin package:

sudo apt-get update && sudo apt-get -y install libcap2-bin
sudo setcap cap_net_bind_service=+ep /path/to/electrumx_server





If any listed service has protocol ssl or wss then SSL_CERTFILE and
SSL_KEYFILE must be defined.

Tor onion addresses are invalid in SERVICES.

Here is an example value of the SERVICES environment variable:

tcp://:50001,ssl://:50002,wss://:50004,rpc://





This serves tcp, ssl, wss on all interfaces on ports 50001, 50002 and 50004
respectively.  rpc is served on its default host localhost and default port
8000.






	
REPORT_SERVICES

	A comma-separated list of services ElectrumX will advertize and other servers in the
server network (if peer discovery is enabled), and any successful connection.

This environment variable must be set correctly, taking account of your network,
firewall and router setup, for clients and other servers to see how to connect to your
server.  If not set or empty, no services are advertized.

The rpc protocol, special IP addresses (including private ones if peer discovery is
enabled), and localhost are invalid in REPORT_SERVICES.

Here is an example value of the REPORT_SERVICES environment variable:

tcp://sv.usebsv.com:50001,ssl://sv.usebsv.com:50002,wss://sv.usebsv.com:50004





This advertizes tcp, ssl, wss services at sv.usebsv.com on ports
50001, 50002 and 50004 respectively.






Note

Certificate Authority-signed certificates don’t work over Tor, so you should
only have Tor services` in REPORT_SERVICES if yours is self-signed.




	
SSL_CERTFILE

	The filesystem path to your SSL certificate file.

Creating a self-signed SSL certificate






	
SSL_KEYFILE

	The filesystem path to your SSL key file.

Creating a self-signed SSL certificate








Miscellaneous

These environment variables are optional:


	
LOG_FORMAT

	The Python logging format string [https://docs.python.org/3/library/logging.html#logrecord-attributes]
to use.  Defaults to %(levelname)s:%(name)s:%(message)s.






	
LOG_LEVEL

	The default Python logging level, a case-insensitive string.  Useful values
are ‘debug’, ‘info’, ‘warning’ and ‘error’.






	
ALLOW_ROOT

	Set this environment variable to anything non-empty to allow running
ElectrumX as root.






	
NET

	Must be a NET from one of the Coin classes in
lib/coins.py [https://github.com/kyuupichan/electrumx/blob/master/electrumx/lib/coins.py].  Defaults to mainnet.






	
DB_ENGINE

	Database engine for the UTXO and history database.  The default is
leveldb.  The other alternative is rocksdb.  You will need
to install the appropriate python package for your engine.  The
value is not case sensitive.






	
DONATION_ADDRESS

	The server donation address reported to Electrum clients.  Defaults
to empty, which Electrum interprets as meaning there is none.






	
BANNER_FILE

	The path to a banner file to serve to clients in Electrum’s
“Console” tab.  Relative file paths must be relative to
DB_DIRECTORY.  The banner file is re-read for each new
client.

You can place several meta-variables in your banner file, which will be
replaced before serving to a client.


	$SERVER_VERSION is replaced with the ElectrumX version you are
running, such as 1.0.10.


	$SERVER_SUBVERSION is replaced with the ElectrumX user agent
string.  For example, ElectrumX 1.0.10.


	$DAEMON_VERSION is replaced with the daemon’s version as a
dot-separated string. For example 0.12.1.


	$DAEMON_SUBVERSION is replaced with the daemon’s user agent
string.  For example, /BitcoinUnlimited:0.12.1(EB16; AD4)/.


	$DONATION_ADDRESS is replaced with the address from the
DONATION_ADDRESS environment variable.




See here [https://github.com/shsmith/electrumx-banner-updater]
for a script that updates a banner file periodically with useful
statistics about fees, last block time and height, etc.






	
TOR_BANNER_FILE

	As for BANNER_FILE (which is also the default) but shown
to incoming connections believed to be to your Tor hidden service.






	
ANON_LOGS

	Set to anything non-empty to replace IP addresses in logs with
redacted text like xx.xx.xx.xx:xxx.  By default IP addresses
will be written to logs.






	
LOG_SESSIONS

	The number of seconds between printing session statistics to the
log.  The output is identical to the sessions RPC command
except that ANON_LOGS is honoured.  Defaults to 3600.  Set
to zero to suppress this logging.






	
REORG_LIMIT

	The maximum number of blocks to be able to handle in a chain
reorganisation.  ElectrumX retains some fairly compact undo
information for this many blocks in levelDB.  The default is a
function of COIN and NET; for Bitcoin mainnet it
is 200.






	
EVENT_LOOP_POLICY

	The name of an event loop policy to replace the default asyncio
policy, if any.  At present only uvloop is accepted, in which
case you must have installed the uvloop [https://pypi.python.org/pypi/uvloop] Python package.

If you are not sure what this means leave it unset.






	
DROP_CLIENT

	Set a regular expression to disconnect any client based on their
version string. For example to drop versions from 1.0 to 1.2 use
the regex 1\.[0-2]\.\d+.








Resource Usage Limits

The following environment variables are all optional and help to limit
server resource consumption and prevent simple DoS.

Address subscriptions in ElectrumX are very cheap - they consume about
160 bytes of memory each and are processed efficiently.  I feel the
two subscription-related defaults below are low and encourage you to
raise them.


	
MAX_SESSIONS

	The maximum number of incoming connections.  Once reached, TCP and
SSL listening sockets are closed until the session count drops
naturally to 95% of the limit.  Defaults to 1,000.






	
MAX_SEND

	The maximum size of a response message to send over the wire, in
bytes.  Defaults to 1,000,000 (except for AuxPoW coins, which default
to 10,000,000).  Values smaller than 350,000 are taken as 350,000
because standard Electrum protocol header “chunk” requests are almost
that large.

The Electrum protocol has a flaw in that address histories must be
served all at once or not at all, an obvious avenue for abuse.
MAX_SEND is a stop-gap until the protocol is improved to
admit incremental history requests.  Each history entry is
approximately 100 bytes so the default is equivalent to a history
limit of around 10,000 entries, which should be ample for most
legitimate users.  If you use a higher default bear in mind one
client can request history for multiple addresses.  Also note that
the largest raw transaction you will be able to serve to a client is
just under half of MAX_SEND, as each raw byte becomes 2
hexadecimal ASCII characters on the wire.  Very few transactions on
Bitcoin mainnet are over 500KB in size.






	
COST_SOFT_LIMIT

	




	
COST_HARD_LIMIT

	




	
REQUEST_SLEEP

	




	
INITIAL_CONCURRENT

	All values are integers. COST_SOFT_LIMIT defaults to 1,000,
COST_HARD_LIMIT to 10,000, REQUEST_SLEEP to 2,500
milliseconds, and INITIAL_CONCURRENT to 10 concurrent requests.

The server prices each request made to it based upon an estimate of the resources needed
to process it.  Factors include whether the request uses bitcoind, how much bandwidth
it uses, and how hard it hits the databases.

To set a base for the units, a blockchain.scripthash.subscribe() subscription to
an address with a history of 2 or fewer transactions is costed at 1.0 before
considering the bandwidth consumed.  server.ping() is costed at 0.1.

As the total cost of a session goes over the soft limit, its requests start to be
throttled in two ways.  First, the number of requests for that session that the server
will process concurrently is reduced.  Second, each request starts to sleep a little
before being handled.

Before throttling starts, the server will process up to INITIAL_CONCURRENT
requests concurrently without sleeping.  As the session cost ranges from
COST_SOFT_LIMIT to COST_HARD_LIMIT, concurrency drops linearly to
zero and each request’s sleep time increases linearly up to REQUEST_SLEEP
milliseconds.  Once the hard limit is reached, the session is disconnected.

In order that non-abusive sessions can continue to be served, a session’s cost gradually
decays over time.  Subscriptions have an ongoing servicing cost, so the decay is slower
as the number of subscriptions increases.

If a session disconnects, ElectrumX continues to associate its cost with its IP address,
so if it immediately reconnects it will re-acquire its previous cost allocation.

A server operator should experiment with different values according to server loads.  It
is not necessarily true that e.g. having a low soft limit, decreasing concurrency and
increasing sleep will help handling heavy loads, as it will also increase the backlog of
requests the server has to manage in memory.  It will also give a much worse experience
for genuine connections.






	
BANDWIDTH_UNIT_COST

	The number of bytes, sent and received, by a session that is deemed to cost 1.0.

The default value 5,000 bytes, meaning the bandwidth cost assigned to a response
of 100KB is 20.  If your bandwidth is cheap you should probably raise this.






	
REQUEST_TIMEOUT

	An integer number of seconds defaulting to 30.  If a request takes longer than
this to respond to, either because of request limiting or because the request is
expensive, the server rejects it and returns a timeout error to the client indicating
that the server is busy.

This can help prevent large backlogs of unprocessed requests building up under heavy load.






	
SESSION_TIMEOUT

	An integer number of seconds defaulting to 600.  Sessions that have not sent a
request for longer than this are disconnected.  Properly functioning clients should send
a server.ping() request once roughly 450 seconds have passed since the previous
request, in order to avoid disconnection.








Peer Discovery

In response to the server.peers.subscribe() RPC call, ElectrumX
will only return peer servers that it has recently connected to and
verified basic functionality.

If you are not running a Tor proxy ElectrumX will be unable to connect
to onion server peers, in which case rather than returning no onion
peers it will fall back to a hard-coded list.

To give incoming clients a full range of onion servers you will need
to be running a Tor proxy for ElectrumX to use.

ElectrumX will perform peer-discovery by default and announce itself
to other peers.  If your server is private you may wish to disable
some of this.


	
PEER_DISCOVERY

	This environment variable is case-insensitive and defaults to
on.

If on, ElectrumX will occasionally connect to and verify its
network of peer servers.

If off, peer discovery is disabled and a hard-coded default list
of servers will be read in and served.  If set to self then peer
discovery is disabled and the server will only return itself in the
peers list.






	
PEER_ANNOUNCE

	Set this environment variable to empty to disable announcing itself.
If not defined, or non-empty, ElectrumX will announce itself to
peers.

If peer discovery is disabled this environment variable has no
effect, because ElectrumX only announces itself to peers when doing
peer discovery if it notices it is not present in the peer’s
returned list.






	
FORCE_PROXY

	By default peer discovery happens over the clear internet.  Set this
to non-empty to force peer discovery to be done via the proxy.  This
might be useful if you are running a Tor service exclusively and
wish to keep your IP address private.






	
TOR_PROXY_HOST

	The host where your Tor proxy is running.  Defaults to
localhost.

If you are not running a Tor proxy just leave this environment
variable undefined.






	
TOR_PROXY_PORT

	The port on which the Tor proxy is running.  If not set, ElectrumX
will autodetect any proxy running on the usual ports 9050 (Tor),
9150 (Tor browser bundle) and 1080 (socks).






	
BLACKLIST_URL

	URL to retrieve a list of blacklisted peers.  If not set, a coin-
specific default is used.








Cache

If synchronizing from the Genesis block your performance might change
by tweaking the cache size.  Cache size is only checked roughly every
minute, so the cache can grow beyond the specified size.  Moreover,
the Python process is often quite a bit fatter than the cache size,
because of Python overhead and also because leveldb consumes a lot of
memory when flushing.  So I recommend you do not set this over 60% of
your available physical RAM:


	
CACHE_MB

	The amount of cache, in MB, to use.  The default is 1,200.

A portion of the cache is reserved for unflushed history, which is
written out frequently.  The bulk is used to cache UTXOs.

Larger caches probably increase performance a little as there is
significant searching of the UTXO cache during indexing.  However, I
don’t see much benefit in my tests pushing this too high, and in
fact performance begins to fall, probably because LevelDB already
caches, and also because of Python GC.

I do not recommend raising this above 2000.











          

      

      

    

  

    
      
          
            
  
Electrum Protocol

This is intended to be a reference for client and server authors
alike.



	Protocol Basics

	Protocol Methods

	Protocol Changes

	Removed Protocol Methods

	Protocol Ideas









          

      

      

    

  

    
      
          
            
  
Protocol Basics


Message Stream

Clients and servers communicate using JSON RPC over an unspecified underlying stream
transport.  Examples include TCP, SSL, WS and WSS.

Two standards JSON RPC 1.0 [http://www.jsonrpc.org/specification_v1] and JSON RPC 2.0 [http://www.jsonrpc.org/specification] are specified; use of version
2.0 is encouraged but not required.  Server support of batch requests
is encouraged for version 1.0 but not required.


Note

A client or server should only indicate JSON RPC 2.0 by
setting the jsonrpc [http://www.jsonrpc.org/specification#request_object] member of
its messages to "2.0" if it supports the version 2.0 protocol in
its entirety.  ElectrumX does and will expect clients advertizing so
to function correctly.  Those that do not will be disconnected and
possibly blacklisted.



Clients making batch requests should limit their size depending on the
nature of their query, because servers will limit response size as an
anti-DoS mechanism.

Over TCP and SSL raw sockets each RPC call, and each response, MUST be terminated by a
single newline to delimit messages.  Websocket messages are already framed so they MUST
NOT be newline terminated.  The JSON specification does not permit control characters
within strings, so no confusion is possible there.  However it does permit newlines as
extraneous whitespace between elements; client and server MUST NOT use newlines in such a
way.

If using JSON RPC 2.0’s feature of parameter passing by name, the
names shown in the description of the method or notification in
question MUST be used.

A server advertising support for a particular protocol version MUST
support each method documented for that protocol version, unless the
method is explicitly marked optional.  It may support other methods or
additional parameters with unspecified behaviour.  Use of additional
parameters is discouraged as it may conflict with future versions of
the protocol.




Notifications

Some RPC calls are subscriptions which, after the initial response,
will send a JSON RPC notification each time the thing
subscribed to changes.  The method of the notification is the same
as the method of the subscription, and the params of the
notification (and their names) are given in the documentation of the
method.




Version Negotiation

It is desirable to have a way to enhance and improve the protocol
without forcing servers and clients to upgrade at the same time.

Protocol versions are denoted by dotted number strings with at least
one dot.  Examples: “1.5”, “1.4.1”, “2.0”.  In “a.b.c” a is the
major version number, b the minor version number, and c the
revision number.

A party to a connection will speak all protocol versions in a range,
say from protocol_min to protocol_max, which may be the same.
When a connection is made, both client and server must initially
assume the protocol to use is their own protocol_min.

The client should send a server.version() RPC call as early as
possible in order to negotiate the precise protocol version; see its
description for more detail.  All responses received in the stream
from and including the server’s response to this call will use its
negotiated protocol version.




Script Hashes

A script hash is the hash of the binary bytes of the locking
script (ScriptPubKey), expressed as a hexadecimal string.  The hash
function to use is given by the “hash_function” member of
server.features() (currently sha256() only).  Like for
block and transaction hashes, when converting the big-endian binary
hash to a hexadecimal string the least-significant byte appears first,
and the most-significant byte last.

For example, the legacy Bitcoin address from the genesis block:

1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa





has P2PKH script:

76a91462e907b15cbf27d5425399ebf6f0fb50ebb88f1888ac





with SHA256 hash:

6191c3b590bfcfa0475e877c302da1e323497acf3b42c08d8fa28e364edf018b





which is sent to the server reversed as:

8b01df4e368ea28f8dc0423bcf7a4923e3a12d307c875e47a0cfbf90b5c39161





By subscribing to this hash you can find P2PKH payments to that address.

One public key, the genesis block public key, among the trillions for
that address is:

04678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f61deb
649f6bc3f4cef38c4f35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5f





which has P2PK script:

4104678afdb0fe5548271967f1a67130b7105cd6a828e03909a67962e0ea1f61deb
649f6bc3f4cef38c4f35504e51ec112de5c384df7ba0b8d578a4c702b6bf11d5fac





with SHA256 hash:

3318537dfb3135df9f3d950dbdf8a7ae68dd7c7dfef61ed17963ff80f3850474





which is sent to the server reversed as:

740485f380ff6379d11ef6fe7d7cdd68aea7f8bd0d953d9fdf3531fb7d531833





By subscribing to this hash you can find P2PK payments to the genesis
block public key.


Note

The Genesis block coinbase is uniquely unspendable and
therefore not indexed.  It will not show with the above P2PK script
hash subscription.






Status

To calculate the status of a script hash (or
address):

1. order confirmed transactions to the script hash by increasing
height (and position in the block if there are more than one in a
block)

2. form a string that is the concatenation of strings
"tx_hash:height:" for each transaction in order, where:



	tx_hash is the transaction hash in hexadecimal


	height is the height of the block it is in.







3. Next, with mempool transactions in any order, append a similar
string for those transactions, but where height is -1 if the
transaction has at least one unconfirmed input, and 0 if all
inputs are confirmed.

4. The status of the script hash is the sha256() hash of the
full string expressed as a hexadecimal string, or null if the
string is empty because there are no transactions.




Block Headers

Originally Electrum clients would download all block headers and
verify the chain of hashes and header difficulty in order to confirm
the merkle roots with which to check transaction inclusion.

With the BTC and BCH chains now past height 500,000, the headers form
over 40MB of raw data which becomes 80MB if downloaded as text from
Electrum servers.  The situation is worse for testnet and coins with
more frequent blocks.  Downloading and verifying all this data on
initial use would take several minutes, during which Electrum was
non-responsive.

To facilitate a better experience for SPV clients, particularly on
mobile, protocol version 1.4 introduces an
optional cp_height argument to the blockchain.block.header()
and blockchain.block.headers() RPC calls.

This requests the server provide a merkle proof, to a single 32-byte
checkpoint hard-coded in the client, that the header(s) provided are
valid in the same way the server proves a transaction is included in a
block.  If several consecutive headers are requested, the proof is
provided for the final header - the prev_hash links in the headers
are sufficient to prove the others valid.

Using this feature client software only needs to download the headers
it is interested in up to the checkpoint.  Headers after the
checkpoint must all be downloaded and validated as before.  The RPC
calls return the merkle root, so to embed a checkpoint in a client
simply make an RPC request to a couple of trusted servers for the
greatest height to which a reorganisation of the chain is infeasible,
and confirm the returned roots match.


Note

with 500,000 headers of 80 bytes each, a naïve server
implementation would require hashing approximately 88MB of data to
provide a single merkle proof.  ElectrumX implements an optimization
such that it hashes only approximately 180KB of data per proof.









          

      

      

    

  

    
      
          
            
  
Protocol Methods


blockchain.block.header

Return the block header at the given height.

Signature



	
blockchain.block.header(height, cp_height=0)

	




New in version 1.3.




Changed in version 1.4: cp_height parameter added




Changed in version 1.4.1.



height


The height of the block, a non-negative integer.




cp_height


Checkpoint height, a non-negative integer.  Ignored if zero,
otherwise the following must hold:


height <= cp_height










Result


If cp_height is zero, the raw block header as a hexadecimal
string.

Otherwise a dictionary with the following keys.  This provides a
proof that the given header is present in the blockchain; presumably
the client has the merkle root hard-coded as a checkpoint.


	branch

The merkle branch of header up to root, deepest pairing first.



	header

The raw block header as a hexadecimal string.  Starting with version 1.4.1,
AuxPoW data (if present in the original header) is truncated.



	root

The merkle root of all blockchain headers up to and including
cp_height.








Example Result

With height 5 and cp_height 0 on the Bitcoin Cash chain:

"0100000085144a84488ea88d221c8bd6c059da090e88f8a2c99690ee55dbba4e00000000e11c48fecdd9e72510ca84f023370c9a38bf91ac5cae88019bee94d24528526344c36649ffff001d1d03e477"





With cp_height 8:

{
  "branch": [
     "000000004ebadb55ee9096c9a2f8880e09da59c0d68b1c228da88e48844a1485",
     "96cbbc84783888e4cc971ae8acf86dd3c1a419370336bb3c634c97695a8c5ac9",
     "965ac94082cebbcffe458075651e9cc33ce703ab0115c72d9e8b1a9906b2b636",
     "89e5daa6950b895190716dd26054432b564ccdc2868188ba1da76de8e1dc7591"
     ],
  "header": "0100000085144a84488ea88d221c8bd6c059da090e88f8a2c99690ee55dbba4e00000000e11c48fecdd9e72510ca84f023370c9a38bf91ac5cae88019bee94d24528526344c36649ffff001d1d03e477",
  "root": "e347b1c43fd9b5415bf0d92708db8284b78daf4d0e24f9c3405f45feb85e25db"
}








blockchain.block.headers

Return a concatenated chunk of block headers from the main chain.

Signature



	
blockchain.block.headers(start_height, count, cp_height=0)

	




New in version 1.2.




Changed in version 1.4: cp_height parameter added




Changed in version 1.4.1.



start_height


The height of the first header requested, a non-negative integer.




count


The number of headers requested, a non-negative integer.




cp_height


Checkpoint height, a non-negative integer.  Ignored if zero,
otherwise the following must hold:


start_height + (count - 1) <= cp_height










Result


A dictionary with the following members:


	count

The number of headers returned, between zero and the number
requested.  If the chain has not extended sufficiently far, only
the available headers will be returned.  If more headers than
max were requested at most max will be returned.



	hex

The binary block headers concatenated together in-order as a
hexadecimal string.  Starting with version 1.4.1, AuxPoW data (if present
in the original header) is truncated if cp_height is nonzero.



	max

The maximum number of headers the server will return in a single
request.





The dictionary additionally has the following keys if count and
cp_height are not zero.  This provides a proof that all the given
headers are present in the blockchain; presumably the client has the
merkle root hard-coded as a checkpoint.


	root

The merkle root of all blockchain headers up to and including
cp_height.



	branch

The merkle branch of the last returned header up to root,
deepest pairing first.








Example Response

See here for an example of root and
branch keys.

{
  "count": 2,
  "hex": "0100000000000000000000000000000000000000000000000000000000000000000000003ba3edfd7a7b12b27ac72c3e67768f617fc81bc3888a51323a9fb8aa4b1e5e4a29ab5f49ffff001d1dac2b7c010000006fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000982051fd1e4ba744bbbe680e1fee14677ba1a3c3540bf7b1cdb606e857233e0e61bc6649ffff001d01e36299"
  "max": 2016
}








blockchain.estimatefee

Return the estimated transaction fee per kilobyte for a transaction to
be confirmed within a certain number of blocks.

Signature



	
blockchain.estimatefee(number)

	



number


The number of blocks to target for confirmation.







Result


The estimated transaction fee in coin units per kilobyte, as a
floating point number.  If the daemon does not have enough
information to make an estimate, the integer -1 is returned.




Example Result

0.00101079








blockchain.headers.subscribe

Subscribe to receive block headers when a new block is found.

Signature



	
blockchain.headers.subscribe()

	






Result


The header of the current block chain tip.  The result is a dictionary with two members:


	hex

The binary header as a hexadecimal string.



	height

The height of the header, an integer.








Example Result

{
  "height": 520481,
  "hex": "00000020890208a0ae3a3892aa047c5468725846577cfcd9b512b50000000000000000005dc2b02f2d297a9064ee103036c14d678f9afc7e3d9409cf53fd58b82e938e8ecbeca05a2d2103188ce804c4"
}





Notifications


As this is a subscription, the client will receive a notification
when a new block is found.  The notification’s signature is:



	
blockchain.headers.subscribe(header)

	




	header

See Result above.












Note

should a new block arrive quickly, perhaps while the server
is still processing prior blocks, the server may only notify of the
most recent chain tip.  The protocol does not guarantee notification
of all intermediate block headers.

In a similar way the client must be prepared to handle chain
reorganisations.  Should a re-org happen the new chain tip will not
sit directly on top of the prior chain tip.  The client must be able
to figure out the common ancestor block and request any missing
block headers to acquire a consistent view of the chain state.






blockchain.relayfee

Return the minimum fee a low-priority transaction must pay in order to
be accepted to the daemon’s memory pool.

Signature



	
blockchain.relayfee()

	






Result


The fee in whole coin units (BTC, not satoshis for Bitcoin) as a
floating point number.




Example Results

1e-05





0.0








blockchain.scripthash.get_balance

Return the confirmed and unconfirmed balances of a script hash.

Signature



	
blockchain.scripthash.get_balance(scripthash)

	




New in version 1.1.



scripthash


The script hash as a hexadecimal string.







Result


A dictionary with keys confirmed and unconfirmed.  The value of
each is the appropriate balance in coin units as a string.




Result Example

{
  "confirmed": "1.03873966",
  "unconfirmed": "0.236844"
}








blockchain.scripthash.get_history

Return the confirmed and unconfirmed history of a script hash.

Signature



	
blockchain.scripthash.get_history(scripthash)

	




New in version 1.1.



scripthash


The script hash as a hexadecimal string.







Result


A list of confirmed transactions in blockchain order, with the
output of blockchain.scripthash.get_mempool() appended to the
list.  Each confirmed transaction is a dictionary with the following
keys:


	height

The integer height of the block the transaction was confirmed in.



	tx_hash

The transaction hash in hexadecimal.





See blockchain.scripthash.get_mempool() for how mempool
transactions are returned.




Result Examples

[
  {
    "height": 200004,
    "tx_hash": "acc3758bd2a26f869fcc67d48ff30b96464d476bca82c1cd6656e7d506816412"
  },
  {
    "height": 215008,
    "tx_hash": "f3e1bf48975b8d6060a9de8884296abb80be618dc00ae3cb2f6cee3085e09403"
  }
]





[
  {
    "fee": 20000,
    "height": 0,
    "tx_hash": "9fbed79a1e970343fcd39f4a2d830a6bde6de0754ed2da70f489d0303ed558ec"
  }
]








blockchain.scripthash.get_mempool

Return the unconfirmed transactions of a script hash.

Signature



	
blockchain.scripthash.get_mempool(scripthash)

	




New in version 1.1.



scripthash


The script hash as a hexadecimal string.







Result


A list of mempool transactions in arbitrary order.  Each mempool
transaction is a dictionary with the following keys:


	height

0 if all inputs are confirmed, and -1 otherwise.



	tx_hash

The transaction hash in hexadecimal.



	fee

The transaction fee in minimum coin units (satoshis).








Result Example

[
  {
    "tx_hash": "45381031132c57b2ff1cbe8d8d3920cf9ed25efd9a0beb764bdb2f24c7d1c7e3",
    "height": 0,
    "fee": 24310
  }
]








blockchain.scripthash.listunspent

Return an ordered list of UTXOs sent to a script hash.

Signature



	
blockchain.scripthash.listunspent(scripthash)

	




New in version 1.1.



scripthash


The script hash as a hexadecimal string.







Result


A list of unspent outputs in blockchain order.  This function takes
the mempool into account.  Mempool transactions paying to the
address are included at the end of the list in an undefined order.
Any output that is spent in the mempool does not appear.  Each
output is a dictionary with the following keys:


	height

The integer height of the block the transaction was confirmed in.
0 if the transaction is in the mempool.



	tx_pos

The zero-based index of the output in the transaction’s list of
outputs.



	tx_hash

The output’s transaction hash as a hexadecimal string.



	value

The output’s value in minimum coin units (satoshis).








Result Example

[
  {
    "tx_pos": 0,
    "value": 45318048,
    "tx_hash": "9f2c45a12db0144909b5db269415f7319179105982ac70ed80d76ea79d923ebf",
    "height": 437146
  },
  {
    "tx_pos": 0,
    "value": 919195,
    "tx_hash": "3d2290c93436a3e964cfc2f0950174d8847b1fbe3946432c4784e168da0f019f",
    "height": 441696
  }
]








blockchain.scripthash.subscribe

Subscribe to a script hash.

Signature



	
blockchain.scripthash.subscribe(scripthash)

	




New in version 1.1.



scripthash


The script hash as a hexadecimal string.







Result


The status of the script hash.




Notifications


The client will receive a notification when the status of the script
hash changes.  Its signature is



	
blockchain.scripthash.subscribe(scripthash, status)

	












blockchain.scripthash.unsubscribe

Unsubscribe from a script hash, preventing future notifications if its status changes.

Signature



	
blockchain.scripthash.unsubscribe(scripthash)

	




New in version 1.4.2.



scripthash


The script hash as a hexadecimal string.







Result


Returns True if the scripthash was subscribed to, otherwise False.
Note that False might be returned even for something subscribed to earlier,
because the server can drop subscriptions in rare circumstances.







blockchain.transaction.broadcast

Broadcast a transaction to the network.

Signature



	
blockchain.transaction.broadcast(raw_tx)

	




Changed in version 1.1: errors returned as JSON RPC errors rather than as a result.



raw_tx


The raw transaction as a hexadecimal string.







Result


The transaction hash as a hexadecimal string.

Note protocol version 1.0 (only) does not respond according to
the JSON RPC specification if an error occurs.  If the daemon
rejects the transaction, the result is the error message string from
the daemon, as if the call were successful.  The client needs to
determine if an error occurred by comparing the result to the
expected transaction hash.




Result Examples

"a76242fce5753b4212f903ff33ac6fe66f2780f34bdb4b33b175a7815a11a98e"





Protocol version 1.0 returning an error as the result:

"258: txn-mempool-conflict"








blockchain.transaction.get

Return a raw transaction.

Signature



	
blockchain.transaction.get(tx_hash, verbose=false)

	




Changed in version 1.1: ignored argument height removed




Changed in version 1.2: verbose argument added



tx_hash


The transaction hash as a hexadecimal string.




verbose


Whether a verbose coin-specific response is required.







Result


If verbose is false:


The raw transaction as a hexadecimal string.




If verbose is true:


The result is a coin-specific dictionary – whatever the coin
daemon returns when asked for a verbose form of the raw
transaction.







Example Results

When verbose is false:

"01000000015bb9142c960a838329694d3fe9ba08c2a6421c5158d8f7044cb7c48006c1b48"
"4000000006a4730440220229ea5359a63c2b83a713fcc20d8c41b20d48fe639a639d2a824"
"6a137f29d0fc02201de12de9c056912a4e581a62d12fb5f43ee6c08ed0238c32a1ee76921"
"3ca8b8b412103bcf9a004f1f7a9a8d8acce7b51c983233d107329ff7c4fb53e44c855dbe1"
"f6a4feffffff02c6b68200000000001976a9141041fb024bd7a1338ef1959026bbba86006"
"4fe5f88ac50a8cf00000000001976a91445dac110239a7a3814535c15858b939211f85298"
"88ac61ee0700"





When verbose is true:

{
  "blockhash": "0000000000000000015a4f37ece911e5e3549f988e855548ce7494a0a08b2ad6",
  "blocktime": 1520074861,
  "confirmations": 679,
  "hash": "36a3692a41a8ac60b73f7f41ee23f5c917413e5b2fad9e44b34865bd0d601a3d",
  "hex": "01000000015bb9142c960a838329694d3fe9ba08c2a6421c5158d8f7044cb7c48006c1b484000000006a4730440220229ea5359a63c2b83a713fcc20d8c41b20d48fe639a639d2a8246a137f29d0fc02201de12de9c056912a4e581a62d12fb5f43ee6c08ed0238c32a1ee769213ca8b8b412103bcf9a004f1f7a9a8d8acce7b51c983233d107329ff7c4fb53e44c855dbe1f6a4feffffff02c6b68200000000001976a9141041fb024bd7a1338ef1959026bbba860064fe5f88ac50a8cf00000000001976a91445dac110239a7a3814535c15858b939211f8529888ac61ee0700",
  "locktime": 519777,
  "size": 225,
  "time": 1520074861,
  "txid": "36a3692a41a8ac60b73f7f41ee23f5c917413e5b2fad9e44b34865bd0d601a3d",
  "version": 1,
  "vin": [ {
    "scriptSig": {
      "asm": "30440220229ea5359a63c2b83a713fcc20d8c41b20d48fe639a639d2a8246a137f29d0fc02201de12de9c056912a4e581a62d12fb5f43ee6c08ed0238c32a1ee769213ca8b8b[ALL|FORKID] 03bcf9a004f1f7a9a8d8acce7b51c983233d107329ff7c4fb53e44c855dbe1f6a4",
      "hex": "4730440220229ea5359a63c2b83a713fcc20d8c41b20d48fe639a639d2a8246a137f29d0fc02201de12de9c056912a4e581a62d12fb5f43ee6c08ed0238c32a1ee769213ca8b8b412103bcf9a004f1f7a9a8d8acce7b51c983233d107329ff7c4fb53e44c855dbe1f6a4"
    },
    "sequence": 4294967294,
    "txid": "84b4c10680c4b74c04f7d858511c42a6c208bae93f4d692983830a962c14b95b",
    "vout": 0}],
  "vout": [ { "n": 0,
             "scriptPubKey": { "addresses": [ "12UxrUZ6tyTLoR1rT1N4nuCgS9DDURTJgP"],
                               "asm": "OP_DUP OP_HASH160 1041fb024bd7a1338ef1959026bbba860064fe5f OP_EQUALVERIFY OP_CHECKSIG",
                               "hex": "76a9141041fb024bd7a1338ef1959026bbba860064fe5f88ac",
                               "reqSigs": 1,
                               "type": "pubkeyhash"},
             "value": 0.0856647},
           { "n": 1,
             "scriptPubKey": { "addresses": [ "17NMgYPrguizvpJmB1Sz62ZHeeFydBYbZJ"],
                               "asm": "OP_DUP OP_HASH160 45dac110239a7a3814535c15858b939211f85298 OP_EQUALVERIFY OP_CHECKSIG",
                               "hex": "76a91445dac110239a7a3814535c15858b939211f8529888ac",
                               "reqSigs": 1,
                               "type": "pubkeyhash"},
             "value": 0.1360904}]}








blockchain.transaction.get_merkle

Return the merkle branch to a confirmed transaction given its hash
and height.

Signature



	
blockchain.transaction.get_merkle(tx_hash, height)

	



tx_hash


The transaction hash as a hexadecimal string.




height


The height at which it was confirmed, an integer.







Result


A dictionary with the following keys:


	block_height

The height of the block the transaction was confirmed in.



	merkle

A list of transaction hashes the current hash is paired with,
recursively, in order to trace up to obtain merkle root of the
block, deepest pairing first.



	pos

The 0-based index of the position of the transaction in the
ordered list of transactions in the block.








Result Example

{
  "merkle":
  [
    "713d6c7e6ce7bbea708d61162231eaa8ecb31c4c5dd84f81c20409a90069cb24",
    "03dbaec78d4a52fbaf3c7aa5d3fccd9d8654f323940716ddf5ee2e4bda458fde",
    "e670224b23f156c27993ac3071940c0ff865b812e21e0a162fe7a005d6e57851",
    "369a1619a67c3108a8850118602e3669455c70cdcdb89248b64cc6325575b885",
    "4756688678644dcb27d62931f04013254a62aeee5dec139d1aac9f7b1f318112",
    "7b97e73abc043836fd890555bfce54757d387943a6860e5450525e8e9ab46be5",
    "61505055e8b639b7c64fd58bce6fc5c2378b92e025a02583303f69930091b1c3",
    "27a654ff1895385ac14a574a0415d3bbba9ec23a8774f22ec20d53dd0b5386ff",
    "5312ed87933075e60a9511857d23d460a085f3b6e9e5e565ad2443d223cfccdc",
    "94f60b14a9f106440a197054936e6fb92abbd69d6059b38fdf79b33fc864fca0",
    "2d64851151550e8c4d337f335ee28874401d55b358a66f1bafab2c3e9f48773d"
  ],
  "block_height": 450538,
  "pos": 710
}








blockchain.transaction.id_from_pos

Return a transaction hash and optionally a merkle proof,
given a block height and a position in the block.

Signature



	
blockchain.transaction.id_from_pos(height, tx_pos, merkle=false)

	




New in version 1.4.



height


The main chain block height, a non-negative integer.




tx_pos


A zero-based index of the transaction in the given block, an integer.




merkle


Whether a merkle proof should also be returned, a boolean.







Result


If merkle is false, the transaction hash as a hexadecimal string.
If true, a dictionary with the following keys:


	tx_hash

The transaction hash as a hexadecimal string.



	merkle

A list of transaction hashes the current hash is paired with,
recursively, in order to trace up to obtain merkle root of the
block, deepest pairing first.








Example Results

When merkle is false:

"fc12dfcb4723715a456c6984e298e00c479706067da81be969e8085544b0ba08"





When merkle is true:

{
  "tx_hash": "fc12dfcb4723715a456c6984e298e00c479706067da81be969e8085544b0ba08",
  "merkle":
  [
    "928c4275dfd6270349e76aa5a49b355eefeb9e31ffbe95dd75fed81d219a23f8",
    "5f35bfb3d5ef2ba19e105dcd976928e675945b9b82d98a93d71cbad0e714d04e",
    "f136bcffeeed8844d54f90fc3ce79ce827cd8f019cf1d18470f72e4680f99207",
    "6539b8ab33cedf98c31d4e5addfe40995ff96c4ea5257620dfbf86b34ce005ab",
    "7ecc598708186b0b5bd10404f5aeb8a1a35fd91d1febbb2aac2d018954885b1e",
    "a263aae6c470b9cde03b90675998ff6116f3132163911fafbeeb7843095d3b41",
    "c203983baffe527edb4da836bc46e3607b9a36fa2c6cb60c1027f0964d971b29",
    "306d89790df94c4632d652d142207f53746729a7809caa1c294b895a76ce34a9",
    "c0b4eff21eea5e7974fe93c62b5aab51ed8f8d3adad4583c7a84a98f9e428f04",
    "f0bd9d2d4c4cf00a1dd7ab3b48bbbb4218477313591284dcc2d7ca0aaa444e8d",
    "503d3349648b985c1b571f59059e4da55a57b0163b08cc50379d73be80c4c8f3"
  ]
}








mempool.get_fee_histogram

Return a histogram of the fee rates paid by transactions in the memory
pool, weighted by transaction size.

Signature



	
mempool.get_fee_histogram()

	




New in version 1.2.






Result


The histogram is an array of [fee, vsize] pairs, where vsizen
is the cumulative virtual size of mempool transactions with a fee rate
in the interval [feen-1, feen], and feen-1 > feen.

Fee intervals may have variable size.  The choice of appropriate
intervals is currently not part of the protocol.




Example Result


[[12, 128812], [4, 92524], [2, 6478638], [1, 22890421]]











server.add_peer

A newly-started server uses this call to get itself into other servers’
peers lists.  It should not be used by wallet clients.

Signature



	
server.add_peer(features)

	




New in version 1.1.




	features

The same information that a call to the sender’s
server.features() RPC call would return.








Result


A boolean indicating whether the request was tentatively accepted.
The requesting server will appear in server.peers.subscribe()
when further sanity checks complete successfully.







server.banner

Return a banner to be shown in the Electrum console.

Signature



	
server.banner()

	






Result


A string.




Example Result


"Welcome to Electrum!"











server.donation_address

Return a server donation address.

Signature



	
server.donation_address()

	






Result


A string.




Example Result


"1BWwXJH3q6PRsizBkSGm2Uw4Sz1urZ5sCj"











server.features

Return a list of features and services supported by the server.

Signature



	
server.features()

	






Result


A dictionary of keys and values.  Each key represents a feature or
service of the server, and the value gives additional information.

The following features MUST be reported by the server.  Additional
key-value pairs may be returned.


	hosts

A dictionary, keyed by host name, that this server can be reached
at.  Normally this will only have a single entry; other entries
can be used in case there are other connection routes (e.g. Tor).

The value for a host is itself a dictionary, with the following
optional keys:


	ssl_port

An integer.  Omit or set to null if SSL connectivity
is not provided.



	tcp_port

An integer.  Omit or set to null if TCP connectivity is
not provided.





A server should ignore information provided about any host other
than the one it connected to.



	genesis_hash

The hash of the genesis block.  This is used to detect if a peer
is connected to one serving a different network.



	hash_function

The hash function the server uses for script hashing.  The client must use this function to hash
pay-to-scripts to produce script hashes to send to the server.
The default is “sha256”.  “sha256” is currently the only
acceptable value.



	server_version

A string that identifies the server software.  Should be the same
as the first element of the result to the server.version() RPC call.



	protocol_max


	protocol_min

Strings that are the minimum and maximum Electrum protocol
versions this server speaks.  Example: “1.1”.



	pruning

An integer, the pruning limit.  Omit or set to null if
there is no pruning limit.  Should be the same as what would
suffix the letter p in the IRC real name.








Example Result

{
    "genesis_hash": "000000000933ea01ad0ee984209779baaec3ced90fa3f408719526f8d77f4943",
    "hosts": {"14.3.140.101": {"tcp_port": 51001, "ssl_port": 51002}},
    "protocol_max": "1.0",
    "protocol_min": "1.0",
    "pruning": null,
    "server_version": "ElectrumX 1.0.17",
    "hash_function": "sha256"
}








server.peers.subscribe

Return a list of peer servers.  Despite the name this is not a
subscription and the server must send no notifications.

Signature



	
server.peers.subscribe()

	






Result


An array of peer servers, each returned as a 3-element array.  For
example:

["107.150.45.210",
 "e.anonyhost.org",
 ["v1.0", "p10000", "t", "s995"]]





The first element is the IP address, the second is the host name
(which might also be an IP address), and the third is a list of
server features.  Each feature and starts with a letter.  ‘v’
indicates the server maximum protocol version, ‘p’ its pruning limit
and is omitted if it does not prune, ‘t’ is the TCP port number, and
‘s’ is the SSL port number.  If a port is not given for ‘s’ or ‘t’
the default port for the coin network is implied.  If ‘s’ or ‘t’ is
missing then the server does not support that transport.







server.ping

Ping the server to ensure it is responding, and to keep the session
alive.  The server may disconnect clients that have sent no requests
for roughly 10 minutes.

Signature



	
server.ping()

	




New in version 1.2.






Result


Returns null.







server.version

Identify the client to the server and negotiate the protocol version.
Only the first server.version() message is accepted.

Signature



	
server.version(client_name="", protocol_version="1.4")

	




	client_name

A string identifying the connecting client software.



	protocol_version

An array [protocol_min, protocol_max], each of which is a
string.  If protocol_min and protocol_max are the same,
they can be passed as a single string rather than as an array of
two strings, as for the default value.





The server should use the highest protocol version both support:

version = min(client.protocol_max, server.protocol_max)





If this is below the value:

max(client.protocol_min, server.protocol_min)





then there is no protocol version in common and the server must
close the connection.  Otherwise it should send a response
appropriate for that protocol version.




Result


An array of 2 strings:


[server_software_version, protocol_version]




identifying the server and the protocol version that will be used
for future communication.




Example:

server.version("Electrum 3.0.6", ["1.1", "1.2"])





Example Result:

["ElectrumX 1.2.1", "1.2"]








Masternode methods (Dash and compatible coins)




masternode.announce.broadcast

Pass through the masternode announce message to be broadcast by the daemon.

Whenever a masternode comes online or a client is syncing, they will
send this message which describes the masternode entry and how to
validate messages from it.

Signature



	
masternode.announce.broadcast(signmnb)

	




	signmnb

Signed masternode broadcast message in hexadecimal format.








Result


true if the message was broadcasted successfully otherwise
false.




Example:

masternode.announce.broadcast("012b825a65a24e2eb8edadbe27c4716dab993bf1046a66da77268ec87dbdd9dfc80100000000ffffffff00000000000000000000ffff22db1fec42d82103bfc9e296bcf4d63eced97b204df8f7b2b90131d452abd2b50909fa2ce6f66d752103bfc9e296bcf4d63eced97b204df8f7b2b90131d452abd2b50909fa2ce6f66d754120e95f74e9c242776df88a586bd52d2bd1838b600e5f3ce9d45d04865ff39a994632d617e810a4480ce24c882980746bc517a92be027d2ea70e4baece33a763608b1f91e5b00000000451201002b825a65a24e2eb8edadbe27c4716dab993bf1046a66da77268ec87dbdd9dfc80100000000ffffffff57280bc007121a0db854998f72e9a9fd2a690f38abffbd9aa94256330c020000b0f91e5b00000000412027c03b1531ee14db6160a62a0cc8b1a7e93ae122bbc6f2dffec721e0ae308b0e19e68523dd429450612bda3a616b56411b4e35d098e25b7c83f19fd2d8537e970000000000000000")





Example Result:

true








masternode.subscribe

Returns the status of masternode.

Signature



	
masternode.subscribe(collateral)

	




	collateral

The txId and the index of the collateral.

A masternode collateral is a transaction with a specific amount of
coins, it’s also known as a masternode identifier.

i.e. for DASH the required amount is 1,000 DASH or for $PAC is
500,000 $PAC.








Result


As this is a subscription, the client will receive a notification
when the masternode status changes.

The status depends on the server the masternode is hosted, the
internet connection, the offline time and even the collateral
amount, so this subscription notice these changes to the user.




Example:

masternode.subscribe("8c59133e714797650cf69043d05e409bbf45670eed7c4e4a386e52c46f1b5e24-0")





Example Result:

{'method': 'masternode.subscribe', u'jsonrpc': u'2.0', u'result': u'ENABLED', 'params': ['8c59133e714797650cf69043d05e409bbf45670eed7c4e4a386e52c46f1b5e24-0'], u'id': 19}








masternode.list

Returns the list of masternodes.

Signature



	
masternode.list(payees)

	




	payees

An array of masternode payee addresses.








Result


An array with the masternodes information.




Example:

masternode.list("['PDFHmjKLvSGdnWgDJSJX49Rrh0SJtRANcE',
'PDFHmjKLvSGdnWgDJSJX49Rrh0SJtRANcF']")





Example Result:

[
  {
    "vin": "9d298c00dae8b491d6801f50cab2e0037852cb556c5619ddb07c50421x9a31ab",
    "status": "ENABLED",
    "protocol": 70213,
    "payee": "PDFHmjKLvSGdnWgDJSJX49Rrh0SJtRANcE",
    "lastseen": "2018-04-01 12:34",
    "activeseconds": 1258000,
    "lastpaidtime": "2018-03-10 12:29",
    "lastpaidblock": 1234,
    "ip": "1.0.0.1",
    "paymentposition": 184,
    "inselection": true,
    "balance": 510350
  },
  {
    "vin": "9d298c00dae8b491d6801f50cab2e0037852cb556c5619ddb07c50421x9a31ac",
    "status": "ENABLED",
    "protocol": 70213,
    "payee": "PDFHmjKLvSGdnWgDJSJX49Rrh0SJtRANcF",
    "lastseen": "2018-04-01 12:34",
    "activeseconds": 1258000,
    "lastpaidtime": "2018-03-15 05:29",
    "lastpaidblock": 1234,
    "ip": "1.0.0.2",
    "paymentposition": 3333,
    "inselection": false,
    "balance": 520700
  },
  ...,
  ...,
  ...,
  ...
]








ProTx methods (Dash DIP3)




protx.diff

Returns a diff between two deterministic masternode lists.
The result also contains proof data.

Signature



	
protx.diff(base_height, height)

	



base_height


The starting block height


1 <= base_height







height


The ending block height.


base_height <= height










Result


A dictionary with deterministic masternode lists diff plus proof data




Example:

protx.diff(1, 20000)





Example Result:

{
  "baseBlockHash": "000000000b866e7fefc7df2b4b37f236175cee9ab6dc925a30c62401d92b7406",
  "blockHash": "0000000005b3f97e0af8c72f9a96eca720237e374ca860938ba0d7a68471c4d6",
  "cbTxMerkleTree": "0200000002c9802d02435cfe09e4253bc1ba4875e9a2f920d5d6adf005d5b9306e5322e6f476d885273422c2fe18e8c420d09484f89eaeee7bb7f4e1ff54bddeb94e099a910103",
  "cbTx": "03000500010000000000000000000000000000000000000000000000000000000000000000ffffffff4b02204e047867335c08fabe6d6d8b2b76b7000000000470393f63424273736170747365743a7265737574736574010000000000000010000015770000000d2f6e6f64655374726174756d2f000000000336c8a119010000001976a914cb594917ad4e5849688ec63f29a0f7f3badb5da688ac6c62c216010000001976a914a3c5284d3cd896815ac815f2dd76a3a71cb3d8e688acba65df02000000001976a9146d649e1c05e89d30809ef39cc8ee1002c0c8c84b88ac00000000260100204e0000b301c3d88e4072305bec5d09e2ed6b836b23af640bcdefd7b8ae7e2ca182dc17",
  "deletedMNs": [
  ],
  "mnList": [
    {
      "proRegTxHash": "6f0bdd7034ce8d3a6976a15e4b4442c274b5c1739fb63fc0a50f01425580e17e",
      "confirmedHash": "000000000be653cd1fbc213239cfec83ca68da657f24cc05305d0be75d34e392",
      "service": "173.61.30.231:19023",
      "pubKeyOperator": "8da7ee1a40750868badef2c17d5385480cae7543f8d4d6e5f3c85b37fdd00a6b4f47726b96e7e7c7a3ea68b5d5cb2196",
      "keyIDVoting": "b35c75cbc69433175d3459843e1f6ebe145bf6a3",
      "isValid": true
    }
  ],
  "merkleRootMNList": "17dc82a12c7eaeb8d7efcd0b64af236b836bede2095dec5b3072408ed8c301b3"
}








protx.info

Returns detailed information about a deterministic masternode.

Signature



	
protx.info(protx_hash)

	



protx_hash


The hash of the initial ProRegTx.







Result


A dictionary with detailed deterministic masternode data




Example:

protx.info("6f0bdd7034ce8d3a6976a15e4b4442c274b5c1739fb63fc0a50f01425580e17e")





Example Result:

{
  "proTxHash": "6f0bdd7034ce8d3a6976a15e4b4442c274b5c1739fb63fc0a50f01425580e17e",
  "collateralHash": "b41439376b6117aebe6ad1ce31dcd217d4934fd00c104029ecb7d21c11d17c94",
  "collateralIndex": 3,
  "operatorReward": 0,
  "state": {
    "registeredHeight": 19525,
    "lastPaidHeight": 20436,
    "PoSePenalty": 0,
    "PoSeRevivedHeight": -1,
    "PoSeBanHeight": -1,
    "revocationReason": 0,
    "keyIDOwner": "b35c75cbc69433175d3459843e1f6ebe145bf6a3",
    "pubKeyOperator": "8da7ee1a40750868badef2c17d5385480cae7543f8d4d6e5f3c85b37fdd00a6b4f47726b96e7e7c7a3ea68b5d5cb2196",
    "keyIDVoting": "b35c75cbc69433175d3459843e1f6ebe145bf6a3",
    "ownerKeyAddr": "ybGQ7a6e7dkJY2jxdbDwdBtyjKZJ8VB7YC",
    "votingKeyAddr": "ybGQ7a6e7dkJY2jxdbDwdBtyjKZJ8VB7YC",
    "addr": "173.61.30.231:19023",
    "payoutAddress": "yWdXnYxGbouNoo8yMvcbZmZ3Gdp6BpySxL"
  },
  "confirmations": 984
}











          

      

      

    

  

    
      
          
            
  
Protocol Changes

This documents lists changes made by protocol version.


Version 1.0


Deprecated methods



	blockchain.utxo.get_address()


	blockchain.numblocks.subscribe()












Version 1.1


Changes



	improved semantics of server.version() to aid protocol
negotiation, and a changed return value.


	blockchain.transaction.get() no longer takes the height
argument that was ignored anyway.


	blockchain.transaction.broadcast() returns errors like any
other JSON RPC call.  A transaction hash result is only returned on
success.










New methods



	blockchain.scripthash.get_balance()


	blockchain.scripthash.get_history()


	blockchain.scripthash.get_mempool()


	blockchain.scripthash.listunspent()


	blockchain.scripthash.subscribe()


	server.features()


	server.add_peer()










Removed methods



	blockchain.utxo.get_address()


	blockchain.numblocks.subscribe()












Version 1.2


Changes



	blockchain.transaction.get() now has an optional parameter
verbose.


	blockchain.headers.subscribe() now has an optional parameter
raw.


	server.version() should not be used for “ping” functionality;
use the new server.ping() method instead.










New methods



	blockchain.block.headers()


	mempool.get_fee_histogram()


	server.ping()










Deprecated methods



	blockchain.block.get_chunk().  Switch to
blockchain.block.headers()


	blockchain.address.get_balance().  Switch to
blockchain.scripthash.get_balance().


	blockchain.address.get_history().  Switch to
blockchain.scripthash.get_history().


	blockchain.address.get_mempool().  Switch to
blockchain.scripthash.get_mempool().


	blockchain.address.listunspent().  Switch to
blockchain.scripthash.listunspent().


	blockchain.address.subscribe().  Switch to
blockchain.scripthash.subscribe().


	blockchain.headers.subscribe() with raw other than True.












Version 1.3


Changes



	blockchain.headers.subscribe() argument raw switches default to
True










New methods



	blockchain.block.header()










Removed methods



	blockchain.address.get_balance()


	blockchain.address.get_history()


	blockchain.address.get_mempool()


	blockchain.address.listunspent()


	blockchain.address.subscribe()










Deprecated methods



	blockchain.block.get_header().  Switch to
blockchain.block.header().












Version 1.4

This version removes all support for deserialized headers.


Changes



	Deserialized headers are no longer available, so removed argument
raw from blockchain.headers.subscribe().


	Only the first server.version() message is accepted.


	Optional cp_height argument added to
blockchain.block.header() and blockchain.block.headers()
to return merkle proofs of the header to a given checkpoint.










New methods



	blockchain.transaction.id_from_pos() to return a transaction
hash, and optionally a merkle proof, given a block height and
position in the block.










Removed methods



	blockchain.block.get_header()


	blockchain.block.get_chunk()












Version 1.4.1


Changes



	blockchain.block.header() and blockchain.block.headers() now
truncate AuxPoW data (if using an AuxPoW chain) when cp_height is
nonzero.  AuxPoW data is still present when cp_height is zero.
Non-AuxPoW chains are unaffected.












Version 1.4.1


New methods



	blockchain.scipthash.unsubscribe() to unsubscribe from a script hash.















          

      

      

    

  

    
      
          
            
  
Removed Protocol Methods

This documents protocol methods that are still supported in some protocol
versions, but not the most recent one.


Deserialized Headers

A deserialized header is a dictionary describing a block at a
given height.

A typical example would be similar to this template:

{
  "block_height": <integer>,
  "version": <integer>,
  "prev_block_hash": <hexadecimal string>,
  "merkle_root":  <hexadecimal string>,
  "timestamp": <integer>,
  "bits": <integer>,
  "nonce": <integer>
}






Note

The precise format of a deserialized block header varies by
coin, and also potentially by height for the same coin.  Detailed
knowledge of the meaning of a block header is neither necessary nor
appropriate in the server.  Consequently they were removed from the
protocol in version 1.4.




blockchain.address.get_balance

Return the confirmed and unconfirmed balances of a bitcoin address.

Signature



	
blockchain.address.get_balance(address)

	




Deprecated since version 1.2: removed in version 1.3




	address

The address as a Base58 string.








Result


See blockchain.scripthash.get_balance().







blockchain.address.get_history

Return the confirmed and unconfirmed history of a bitcoin address.

Signature



	
blockchain.address.get_history(address)

	




Deprecated since version 1.2: removed in version 1.3




	address

The address as a Base58 string.








Result


As for blockchain.scripthash.get_history().







blockchain.address.get_mempool

Return the unconfirmed transactions of a bitcoin address.

Signature



	
blockchain.address.get_mempool(address)

	




Deprecated since version 1.2: removed in version 1.3




	address

The address as a Base58 string.








Result


As for blockchain.scripthash.get_mempool().







blockchain.address.listunspent

Return an ordered list of UTXOs sent to a bitcoin address.

Signature



	
blockchain.address.listunspent(address)

	




Deprecated since version 1.2: removed in version 1.3




	address

The address as a Base58 string.








Result


As for blockchain.scripthash.listunspent().







blockchain.address.subscribe

Subscribe to a bitcoin address.

Signature



	
blockchain.address.subscribe(address)

	




Deprecated since version 1.2: removed in version 1.3



address


The address as a Base58 string.







Result


The status of the address.




Notifications


As this is a subscription, the client will receive a notification
when the status of the address changes.  Its
signature is


	
blockchain.address.subscribe(address, status)

	









blockchain.headers.subscribe

Subscribe to receive block headers when a new block is found.

Signature



Changed in version 1.2: Optional raw parameter added, defaulting to false.




Changed in version 1.3: raw parameter defaults to true.




Changed in version 1.4: raw parameter removed; responses and notifications pass raw
headers.




	raw

This single boolean argument exists in protocol versions 1.2
(defaulting to false) and 1.3 (defaulting to
true) only.








Result


The header of the current block chain tip.  If raw is
true the result is a dictionary with two members:


	hex

The binary header as a hexadecimal string.



	height

The height of the header, an integer.





If raw is false the result is the coin-specific
deserialized header.




Example Result


With raw false:

{
  "bits": 402858285,
  "block_height": 520481,
  "merkle_root": "8e8e932eb858fd53cf09943d7efc9a8f674dc1363010ee64907a292d2fb0c25d",
  "nonce": 3288656012,
  "prev_block_hash": "000000000000000000b512b5d9fc7c5746587268547c04aa92383aaea0080289",
  "timestamp": 1520495819,
  "version": 536870912
}





With raw true:

{
  "height": 520481,
  "hex": "00000020890208a0ae3a3892aa047c5468725846577cfcd9b512b50000000000000000005dc2b02f2d297a9064ee103036c14d678f9afc7e3d9409cf53fd58b82e938e8ecbeca05a2d2103188ce804c4"
}








Notifications


As this is a subscription, the client will receive a notification
when a new block is found.  The notification’s signature is:



	header

See Result above.












Note

should a new block arrive quickly, perhaps while the server
is still processing prior blocks, the server may only notify of the
most recent chain tip.  The protocol does not guarantee notification
of all intermediate block headers.

In a similar way the client must be prepared to handle chain
reorganisations.  Should a re-org happen the new chain tip will not
sit directly on top of the prior chain tip.  The client must be able
to figure out the common ancestor block and request any missing
block headers to acquire a consistent view of the chain state.






blockchain.numblocks.subscribe

Subscribe to receive the block height when a new block is found.

Signature



	
blockchain.numblocks.subscribe()

	




Deprecated since version 1.0: removed in version 1.1






Result


The height of the current block, an integer.




Notifications


As this is a subscription, the client will receive a notification
when a new block is found.  The notification’s signature is:



	
blockchain.numblocks.subscribe(height)

	












blockchain.utxo.get_address

Return the address paid to by a UTXO.

Signature



	
blockchain.utxo.get_address(tx_hash, index)

	Optional in version 1.0, removed in version 1.1





tx_hash


The transaction hash as a hexadecimal string.




index


The zero-based index of the UTXO in the transaction.







Result


A Base58 address string, or null.  If the transaction
doesn’t exist, the index is out of range, or the output is not paid
to an address, null must be returned.  If the output is
spent null may be returned.







blockchain.block.get_header

Return the deserialized header of the
block at the given height.

Signature



	
blockchain.block.get_header(height)

	




Deprecated since version 1.3: removed in version 1.4



height


The height of the block, an integer.







Result


The coin-specific deserialized header.




Example Result

{
  "bits": 392292856,
  "block_height": 510000,
  "merkle_root": "297cfcc6a66e063692b20650d21cc0ac7a2a80f7277ebd7c5d6c7010a070d25c",
  "nonce": 3347656422,
  "prev_block_hash": "0000000000000000002292de0d9f03dfa15a04dbf09102d5d4552117b717fa86",
  "timestamp": 1519083654,
  "version": 536870912
}








blockchain.block.get_chunk

Return a concatenated chunk of block headers from the main chain.
Typically, a chunk consists of a fixed number of block headers over
which difficulty is constant, and at the end of which difficulty is
retargeted.

In the case of Bitcoin a chunk is 2,016 headers, each of 80 bytes, so
chunk 5 consists of the block headers from height 10,080 to 12,095
inclusive.  When encoded as hexadecimal, the result string is twice as
long, so for Bitcoin it takes 322,560 bytes, making this a
bandwidth-intensive request.

Signature



	
blockchain.block.get_chunk(index)

	




Deprecated since version 1.2: removed in version 1.4



index


The zero-based index of the chunk, an integer.







Result


The binary block headers as hexadecimal strings, in-order and
concatenated together.  As many as headers as are available at the
implied starting height will be returned; this may range from zero
to the coin-specific chunk size.







server.version

Identify the client to the server and negotiate the protocol version.

Signature



Changed in version 1.1: protocol_version is not ignored.




Changed in version 1.2: Use server.ping() rather than sending version requests as a
ping mechanism.




Changed in version 1.4: Only the first server.version() message is accepted.




	client_name

A string identifying the connecting client software.



	protocol_version

An array [protocol_min, protocol_max], each of which is a
string.  If protocol_min and protocol_max are the same,
they can be passed as a single string rather than as an array of
two strings, as for the default value.





The server should use the highest protocol version both support:

version = min(client.protocol_max, server.protocol_max)





If this is below the value:

max(client.protocol_min, server.protocol_min)





then there is no protocol version in common and the server must
close the connection.  Otherwise it should send a response
appropriate for that protocol version.




Result


An array of 2 strings:


[server_software_version, protocol_version]




identifying the server and the protocol version that will be used
for future communication.

Protocol version 1.0: A string identifying the server software.




Examples:

server.version("Electrum 3.0.6", ["1.1", "1.2"])
server.version("2.7.1", "1.0")





Example Results:

["ElectrumX 1.2.1", "1.2"]
"ElectrumX 1.2.1"













          

      

      

    

  

    
      
          
            
  
Protocol Ideas


Note

This is a draft of ideas for a future protocol tentatively called 2.0; they are
not implemented and it is likely they will change and that protocol 2.0 will be
quite different.



This protocol version makes changes intended to allow clients and servers to more easily
scale to support queries about busy addresses.  It has changes to reduce the amount of
round-trip queries made in common usage, and to make results more compact to reduce
bandwidth consumption.

RPC calls with potentially large responses have pagination support, and the return value
of blockchain.scripthash.subscribe() changes.  Script hash status
had to be recalculated with each new transaction and was undefined if it included more
than one mempool transaction.  Its calculation is linear in history length resulting in
quadratic complexity as history grows.  Its calculation for large histories was demanding
for both the server to compute and the client to check.

RPC calls and notifications that combined the effects of the mempool and confirmed history
are removed.

The changes are beneficial to clients and servers alike, but will require changes to both
client-side and server-side logic.  In particular, the client should track what block (by
hash and height) wallet data is synchronized to, and if that hash is no longer part of the
main chain, it will need to remove wallet data for blocks that were reorganized away and
get updated information as of the first reorganized block.  The effects are limited to
script hashes potentially affected by the reorg, and for most clients this will be the
empty set.


blockchain.scripthash.subscribe

Subscribe to a script hash.

Signature



	
blockchain_.scripthash.subscribe(scripthash)

	



scripthash


The script hash as a hexadecimal string.







Result



Changed in version 2.0.



As of protocol 2.0, the transaction hash of the last confirmed
transaction in blockchain order, or null if there are none.

For protocol versions 1.4 and below, the status of
the script hash.




Notifications



Changed in version 2.0.



As this is a subscription, the client receives notifications when
the confirmed transaction history and/or associated mempool
transactions change.

As of protocol 2.0, the initial mempool and subsequent changes to it
are sent with mempool.changes() notifications.  When confirmed
history changes, a notification with signature



	
blockchain.scripthash.subscribe(scripthash, tx_hash)

	






is sent, where tx_hash is the hash of the last confirmed
transaction in blockchain order.







blockchain.scripthash.history

Return part of the confirmed history of a script hash.

Signature



	
blockchain.scripthash.history(scripthash, start_height)

	



scripthash


The script hash as a hexadecimal string.




start_height


History will be returned starting from this height, a non-negative
integer.  If there are several matching transactions in a block,
the server will return all of them – partial results from a
block are not permitted.  The client can start subsequent requests
at one above the greatest returned height and avoid repeats.







Result


A dictionary with the following keys.


	more

true indicates that there may be more history
available.  A follow-up request is required to obtain any.
false means all history to blockchain’s tip has been
returned.



	history

A list of transactions.  Each transaction is itself a list of
two elements:



	The block height


	The transaction hash














Result Examples

{
  "more": false,
  "history": [
    [
      200004,
      "acc3758bd2a26f869fcc67d48ff30b96464d476bca82c1cd6656e7d506816412"
    ],
    [
      215008,
      "f3e1bf48975b8d6060a9de8884296abb80be618dc00ae3cb2f6cee3085e09403"
    ]
  ]
}








blockchain.scripthash.utxos

Return some confirmed UTXOs sent to a script hash.

Signature



	
blockchain.scripthash.utxos(scripthash, start_height)

	




New in version 2.0.



scripthash


The script hash as a hexadecimal string.




start_height


UTXOs will be returned starting from this height, a non-negative
integer.  If there are several UTXOs in one block, the server will
return all of them – partial results from a block are not
permitted.  The client can start subsequent requests at one above
the greatest returned height and avoid repeats.








Note

To get the effects of transactions in the mempool adding or
removing UTXOs, a client must
blockchain.scripthash.subscribe() and track mempool
transactions sent via mempool.changes() notifications.



Result


A dictionary with the following keys.


	more

true indicates that there may be more UTXOs available.
A follow-up request is required to obtain any.  false
means all UTXOs to the blockchain’s tip have been returned.



	utxos

A list of UTXOs.  Each UTXO is itself a list with the following
elements:


	The height of the block the transaction is in


	The transaction hash as a hexadecimal string


	The zero-based index of the output in the transaction’s outputs


	The output value, an integer in minimum coin units (satoshis)











Result Example


	::

	TODO








blockchain.transaction.get

Return a raw transaction.

Signature



	
blockchain_.transaction.get(tx_hash, verbose=false, merkle=false)

	




Changed in version 1.1: ignored argument height removed




Changed in version 1.2: verbose argument added




Changed in version 2.0: merkle argument added



tx_hash


The transaction hash as a hexadecimal string.




verbose


Whether a verbose coin-specific response is required.




merkle


Whether a merkle branch proof should be returned as well.







Result


If verbose is false:


If merkle is false, the raw transaction as a
hexadecimal string.  If true, the dictionary returned
by blockchain.transaction.get_merkle() with an additional
key:

hex


The raw transaction as a hexadecimal string.







If verbose is true:


The result is a coin-specific dictionary – whatever the coin
daemon returns when asked for a verbose form of the raw
transaction.  If merkle is true it will have an
additional key:

merkle


The dictionary returned by
blockchain.transaction.get_merkle().













mempool.changes

A notification that indicates changes to unconfirmed transactions of a
subscribed script hash.  As
its name suggests the notification is stateful; its contents are a
function of what was sent previously.

Signature



	
mempool.changes(scripthash, new, gone)

	




New in version 2.0.



The parameters are as follows:


	scripthash

The script hash the notification is for, a hexadecimal string.



	new

A list of transactions in the mempool that have not previously
been sent to the client, or whose confirmed input status
has changed.  Each transaction is an ordered list of 3 items:


	The raw transaction or its hash as a hexadecimal string.  The
first time the server sends a transaction it sends it raw.
Subsequent references in the same new list or in later
notifications will send the hash only.  Transactions cannot be
32 bytes in size so length can be used to distinguish.


	The transaction fee, an integer in minimum coin units (satoshis)


	true if all inputs are confirmed otherwise false






	gone

A list of hashes of transactions that were previously sent to the
client as being in the mempool but no longer are.  Those
transactions presumably were confirmed in a block or were evicted
from the mempool.








Notification Example


	::

	TODO











          

      

      

    

  

    
      
          
            
  
Peer Discovery

This was implemented in ElectrumX as of version 0.11.0.  Support for
IRC peer discovery was removed in ElectrumX version 1.2.1.

The peer database is an in-memory store of peers with at least
the following information about a peer, required for a response to the
server.peers.subscribe() RPC call:


	host name


	ip address


	TCP and SSL port numbers


	protocol version


	pruning limit, if any





Hard-coded Peers

A list of hard-coded, well-known peers seeds the peer discovery
process.  Ideally it should have at least 4 servers that have shown
commitment to reliable service.

In ElectrumX this is a per-coin property in lib/coins.py [https://github.com/kyuupichan/electrumx/blob/master/electrumx/lib/coins.py].




server.peers.subscribe

server.peers.subscribe() is used by Electrum clients to get a
list of peer servers, in preference to a hard-coded list of peer
servers in the client, which it will fall back to if necessary.

The server should craft its response in a way that reduces the
effectiveness of server sybil attacks and peer spamming.

The response should only include peers it has successfully connected
to recently.  Only reporting recent good peers ensures that those that
have gone offline will be forgotten quickly and not be passed around
for long.

In ElectrumX, “recently” is taken to be the last 24 hours.  Only one
peer from each IPv4/16 netmask is returned, and the number of onion
peers is limited.




Maintaining the Peer Database

In order to keep its peer database up-to-date and fresh, after some
time has passed since the last successful connection to a peer, an
Electrum server should make another attempt to connect, choosing
either the TCP or SSL port.

On connecting it should issue server.peers.subscribe(),
blockchain.headers.subscribe(), and server.features() RPC
calls to collect information about the server and its peers.  If the
peer seems to not know of you, you can issue a server.add_peer()
call to advertise yourself.  Once this is done and replies received,
terminate the connection.

The peer database should view information obtained from an outgoing
connection as authoritative, and prefer it to information obtained
from any other source.

On connecting, a server should confirm the peer is serving the same
network, ideally via the genesis block hash of the
server.features() RPC call below.  Also the height reported by
the peer should be within a small number of the expected value.  If a
peer is on the wrong network it should never be advertised to clients
or other peers.  Such invalid peers should perhaps be remembered for a
short time to prevent redundant revalidation if other peers persist in
advertising them, and later forgotten.

If a connection attempt fails, subsequent reconnection attempts should
follow some kind of exponential backoff.

If a long period of time has elapsed since the last successful
connection attempt, the peer entry should be removed from the
database.  This ensures that all peers that have gone offline will
eventually be forgotten by the network entirely.

ElectrumX will connect to the SSL port if both ports are available.
If that fails it will fall back to the TCP port.  It tries to
reconnect to a good peer at least once every 24 hours, and a failing
after 5 minutes but with exponential backoff.  It forgets a peer
entirely if a few days have passed since a successful connection.
ElectrumX attempts to connect to onion peers through a Tor proxy that
can be configured or that it will try to autodetect.




server.features

server.features() is a fairly new RPC call that a server can use
to advertise what services and features it offers.  It is intended for
use by Electrum clients as well as other peers.  Peers will use it to
gather peer information from the peer itself.

The call takes no arguments and returns a dictionary keyed by feature
name whose value gives details about the feature where appropriate.
If a key is missing the feature is presumed not to be offered.




server.add_peer

server.add_peer() is intended for a new server to get itself in
the connected set.

A server receiving a server.add_peer() call should not replace
existing information about the host(s) given, but instead schedule a
separate connection to verify the information for itself.

To prevent abuse a server may do nothing with second and subsequent
calls to this method from a single connection.

The result should be True if accepted and False otherwise.




Notes for Implementors


	it is very important to only accept peers that appear to be on the
same network.  At a minimum the genesis hash should be compared (if
the peer supports server.features()), and also that the peer’s
reported height is within a few blocks of your own server’s height.


	care should be taken with the server.add_peer() call.
Consider only accepting it once per connection.  Clearnet peer
requests should check the peer resolves to the requesting IP
address, to prevent attackers from being able to trigger arbitrary
outgoing connections from your server.  This doesn’t work for onion
peers so they should be rate-limited.


	it should be possible for a peer to change their port assignments -
presumably connecting to the old ports to perform checks will not
work.


	peer host names should be checked for validity before accepting
them; and localhost should probably be rejected.  If it is an IP
address it should be a normal public one (not private, multicast or
unspecified).


	you should limit the number of new peers accepted from any single
source to at most a handful, to limit the effectiveness of malicious
peers wanting to trigger arbitrary outgoing connections or fill your
peer tables with junk data.


	in the response to server.peers.subscribe() calls, consider
limiting the number of peers on similar IP subnets to protect
against sybil attacks, and in the case of onion servers the total
returned.


	you should not advertise a peer’s IP address if it also advertises a
hostname (avoiding duplicates).










          

      

      

    

  

    
      
          
            
  
RPC Interface

You can query the status of a running server, and affect its behaviour
by sending JSON RPC commands to the LocalRPC port it is listening
on.  This is best done using the electrumx_rpc script
provided.

The general form of invocation is:

electrumx_rpc [-p PORT] <command> [arg1 [arg2...]]





The port to send the commands to can be specified on the command line,
otherwise the environment variable RPC_PORT is used, and if
that is not set then 8000 is assumed.

The following commands are available:


add_peer

Add a peer to the peers list.  ElectrumX will schedule an immediate
connection attempt.  This command takes a single argument: the peer’s
“real name” as it used to advertise itself on IRC:

$ electrumx_rpc add_peer "ecdsa.net v1.0 s110 t"
"peer 'ecdsa.net v1.0 s110 t' added"








daemon_url

This command takes an optional argument that is interpreted
identically to the DAEMON_URL environment variable.  If
omitted, the default argument value is the process’s existing
DAEMON_URL environment variable.

This command replaces the daemon’s URL at run-time, and also
forcefully rotates to the first URL in the list.

For example, in case ElectrumX has previously failed over to a
secondary daemon and you want to revert to the primary having resolved
the connectivity issue, invoking this command without an argument will
have that effect.




disconnect

Disconnect the given session IDs or group names.

Session IDs can be obtained in the logs or with the sessions RPC command.  Group
names can be obtained with the groups RPC command.

The special string all disconnects all sessions.

Example:

$ electrumx_rpc disconnect 209.59.102 34 2
[
    "disconnecting session 34",
    "disconnecting group 209.59.102"
    "unknown: 2",
]








getinfo

Return a summary of server state.  This command takes no arguments.
A typical result is as follows (with annotated comments):

$ electrumx_rpc getinfo
{
    "coin": "BitcoinSegwit",
    "daemon": "127.0.0.1:9334/",
    "daemon height": 572154,         # The daemon's height when last queried
    "db height": 572154,             # The height to which the DB is flushed
    "groups": 586,                   # The number of session groups
    "history cache": "185,014 lookups 9,756 hits 1,000 entries",
    "merkle cache": "280 lookups 54 hits 213 entries",
    "peers": {                       # Peer information
        "bad": 1,
        "good": 51,
        "never": 2,
        "stale": 0,
        "total": 54
    },
    "pid": 11804,                    # Process ID
    "request counts": {              # Count of RPC requests by method name
        "blockchain.block.header": 245,
        "blockchain.block.headers": 70,
        "blockchain.estimatefee": 12776,
        "blockchain.headers.subscribe": 2825,
        "blockchain.relayfee": 740,
        "blockchain.scripthash.get_history": 196,
        "blockchain.scripthash.subscribe": 184626,
        "blockchain.transaction.broadcast": 19,
        "blockchain.transaction.get": 213,
        "blockchain.transaction.get_merkle": 289,
        "getinfo": 3,
        "groups": 1,
        "mempool.get_fee_histogram": 3194,
        "server.add_peer": 9,
        "server.banner": 740,
        "server.donation_address": 754,
        "server.features": 50,
        "server.peers.subscribe": 792,
        "server.ping": 6412,
        "server.version": 2866
    },
    "request total": 216820,         # Total requests served
    "sessions": {                    # Live session stats
        "count": 670,
        "count with subs": 45,
        "errors": 0,
        "logged": 0,
        "paused": 0,
        "pending requests": 79,      # Number of requests currently being processed
        "subs": 36292                # Total subscriptions
    },
    "tx hashes cache": "289 lookups 38 hits 213 entries",
    "txs sent": 19,                  # Transactions broadcast
    "uptime": "01h 39m 04s",
    "version": "ElectrumX 1.10.1"
}





Each ill-formed request, or one that does not follow the Electrum
protocol, increments the error count of the session that sent it.

logging of sessions can be enabled by RPC.

For more information on peers see here.

Clients that are slow to consume data sent to them are paused until their socket
buffer drains sufficiently, at which point processing of requests resumes.

Apart from very short intervals, typically after a new block or when a client has just
connected, the number of unprocessed requests should be low, say 250 or fewer.  If it is
over 1,000 the server is overloaded.

Sessions are put into groups, primarily as an anti-DoS measure.  Currently each session
goes into two groups: one for an IP subnet, and one based on the timeslice it connected
in.  Each member of a group incurs a fraction of the costs of the other group members.
This appears in the sessions_ list under the column XCost.




groups

Return a list of all current session groups.  Takes no arguments.

The output is quite similar to the sessions command.




log

Toggle logging of the given session IDs or group names.  All incoming requests for a
logged session are written to the server log.  The arguments are case-insensitive.

When a group is specified, logging is toggled for its current members only; there is no
effect on future group members.

Session IDs can be obtained in the logs or with the sessions RPC command.  Group
names can be obtained with the groups RPC command.

The special string all turns on logging of all current and future sessions,
none turns off logging of all current and future sessions, and new
toggles logging of future sessions.

Example:

$ electrumx_rpc log new 6 t0 z
[
  "logging new sessions",
  "logging session 6",
  "logging session 3",
  "logging session 57",
  "logging session 12"
  "unknown: z",
]





In the above command sessions 3, 12 and 57 were in group t0 (in fact, session 6 was
too).




peers

Return a list of peer Electrum servers serving the same coin network.
This command takes no arguments.

Peer data is obtained via a peer discovery protocol documented
here:

$ electrumx_rpc peers
Host                           Status   TCP   SSL Server             Min  Max  Pruning   Last Good    Last Try Tries               Source IP Address
bch.tedy.pw                    good   50001 50002 ElectrumX 1.2.1    0.9  1.2          07h 29m 23s 07h 30m 40s     0                 peer 185.215.224.26
shsmithgoggryfbx.onion         good   60001 60002 ElectrumX 1.2.1    0.9  1.2          07h 30m 34s 07h 30m 38s     0                 peer
bccarihace4jdcnt.onion         good   52001 52002 ElectrumX 1.2.1    0.9  1.2          07h 30m 34s 07h 30m 39s     0                 peer
[...]
electroncash.checksum0.com     good   50001 50002 ElectrumX 1.2.1    0.9  1.1          07h 30m 40s 07h 30m 41s     0                 peer 149.56.198.233








query

Run a query of the UTXO and history databases against one or more
addresses, hex scripts or ASCII names (for coins that have an index
on names like Namecoin).  –limit <N> or -l <N> limits the output
for each kind to that many entries.  History is printed in blockchain
order; UTXOs in an arbitrary order.

For example:

$ electrumx_rpc query --limit 5 76a91462e907b15cbf27d5425399ebf6f0fb50ebb88f1888ac
Script: 76a91462e907b15cbf27d5425399ebf6f0fb50ebb88f1888ac
History #1: height 123,723 tx_hash 3387418aaddb4927209c5032f515aa442a6587d6e54677f08a03b8fa7789e688
History #2: height 127,280 tx_hash 4574958d135e66a53abf9c61950aba340e9e140be50efeea9456aa9f92bf40b5
History #3: height 127,909 tx_hash 8b960c87f9f1a6e6910e214fcf5f9c69b60319ba58a39c61f299548412f5a1c6
History #4: height 127,943 tx_hash 8f6b63012753005236b1b76e4884e4dee7415e05ab96604d353001662cde6b53
History #5: height 127,943 tx_hash 60ff2dfdf67917040139903a0141f7525a7d152365b371b35fd1cf83f1d7f704
UTXO #1: tx_hash 9aa497bf000b20f5ec5dc512bb6c1b60b68fc584d38b292b434e839ea8807bf0 tx_pos 0 height 254,148 value 5,500
UTXO #2: tx_hash 1c998142a5a5aae6f8c1eab245351413fe8d4032a3f14345f9943a0d0bc90ec0 tx_pos 0 height 254,161 value 5,500
UTXO #3: tx_hash 53345491b4829140be53f30079c6e4556a18545343b122900ebbfa158f9ca97a tx_pos 0 height 254,163 value 5,500
UTXO #4: tx_hash c71ad947ac46af217da3cd5521113cbd03e36ddada2b4452afe6c15f944d2529 tx_pos 0 height 372,916 value 1,000
UTXO #5: tx_hash c944a6acac054275a5e294e746d9ce79f6dcae91f3b4f5a84561aee6404a55b3 tx_pos 0 height 254,148 value 5,500
Balance: 17.8983303 BCH








reorg

Force a block chain reorganisation, primarily for debugging purposes.
This command takes an optional argument - the number of blocks to
reorg - which defaults to 3.

That number of blocks will be backed up - using undo information
stored in ElectrumX’s database - and then ElectrumX will move forwards
on the daemon’s main chain to its current height.




sessions

Return a list of all current sessions.  Takes no arguments:

ID     Flags            Client Proto    Cost   XCost  Reqs   Txs    Subs    Recv Recv KB    Sent Sent KB      Time                  Peer
1      S6                1.1.1   1.4       0      16     0     0       0       3       0       3       0    05m42s 165.255.191.213:22349
2      S6       all_seeing_eye   1.4       0      16     0     0       0       2       0       2       0    05m40s   67.170.52.226:24995
4      S6                3.3.2   1.4       0      16     0     0      34      45       5      45       3    05m40s 185.220.100.252:40463
3      S6                1.1.2   1.4       0      16     0     0       0       3       0       3       0    05m40s    89.17.142.28:59241





The columns show information by session: the session ID, flags (see below), how the client
identifies itself - typically the Electrum client version, the protocol version
negotiated, the session cost, the additional session cost accrued from its groups, the
number of unprocessed requests, the number of transactions sent, the number of address
subscriptions, the number of requests received and their total size, the number of
messages sent and their size, how long the client has been connected, and the client’s IP
address (if anonymous logging is disabled).

The flags are:



	S an SSL connection


	T a TCP connection


	R a local RPC connection


	L a logged session


	C a connection that is being closed


	the non-negative number is the connection “cost”, with lower
numbers having higher priority.  RPC connections have cost 0,
normal connections have cost at least 1.










stop

Flush all cached data to disk and shut down the server cleanly, as if
sending the KILL signal.  Be patient - during initial sync flushing
all cached data to disk can take several minutes.  This command takes
no arguments.







          

      

      

    

  

    
      
          
            
  
Architecture

[image: _images/pub.png]
 [https://docs.google.com/drawings/d/1Su_DR2c8__-4phm12hAzV65fL2tNm_1IhKr4XivkW6Q/pub?w=960&h=720]
Env

Holds configuration taken from the environment, with apprioriate
defaulting appropriately.  Generally passed to the constructor of
other components which take their settings from it.




Controller

The central part of the server process initialising and coordinating
all the others.  Manages resource usage.




LocalRPC

Handles local JSON RPC connections querying ElectrumX server state.
Started when the ElectrumX process starts.




ElectrumX

Handles JSON Electrum client connections over TCP or SSL.  One
instance per client session.  Should be the only component concerned
with the details of the Electrum wire protocol.

Not started until the Block Processor has caught up with bitcoind.




Daemon

Encapsulates the RPC wire protocol with bitcoind for the whole server.
Transparently handles temporary bitcoind connection errors, and fails
over if necessary.

Notifies the Mempool when the list of mempool transaction hashes is
updated.




Block Processor

Responsible for managing block chain state (UTXO set, history,
transaction and undo information) and for handling block chain
reorganisations.

When caught up, processes new blocks as they are found, and flushes
the updates to the Database immediately.

When syncing uses caches for in-memory state updates since the prior
flush.  Occasionally flushes state to the storage layer when caches
get large.




Prefetcher

Cooperates with the Block Processor to asynchronously prefetch blocks
from bitcoind.  Once it has caught up it additionally asks the Daemon
to refresh its view of bitcoind’s mempool transaction hashes.  Serves
blocks to the Block Processor via a queue.




Mempool

Handles all the details of maintaining a representation of bitcoind’s
mempool state.  Obtains the list of current mempool transaction hashes
from the Daemon when notified by the Prefetcher.

Notifies the Controller that addresses have been touched when the
mempool refreshes (or implicitly when a new block is found).




Database

The underlying data store, made up of the DB backend (such as
leveldb) and the host filesystem.







          

      

      

    

  

    
      
          
            
  
Authors


	Neil Booth

Creator and maintainer.



	Johann Bauer

Backend DB abstraction.



	John Jegutanis

Alt-chain integrations.









          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 


A


  	
      	ANON_LOGS


  





B


  	
      	BANDWIDTH_UNIT_COST


      	BANNER_FILE


      	blockchain.address.get_balance() (built-in function)


      	blockchain.address.get_history() (built-in function)


      	blockchain.address.get_mempool() (built-in function)


      	blockchain.address.listunspent() (built-in function)


      	blockchain.address.subscribe() (built-in function)


      	blockchain.block.get_chunk() (built-in function)


      	blockchain.block.get_header() (built-in function)


      	blockchain.block.header() (built-in function)


      	blockchain.block.headers() (built-in function)


      	blockchain.estimatefee() (built-in function)


      	blockchain.headers.subscribe() (built-in function)


      	blockchain.numblocks.subscribe() (built-in function)


      	blockchain.relayfee() (built-in function)


  

  	
      	blockchain.scripthash.get_balance() (built-in function)


      	blockchain.scripthash.get_history() (built-in function)


      	blockchain.scripthash.get_mempool() (built-in function)


      	blockchain.scripthash.history() (built-in function)


      	blockchain.scripthash.listunspent() (built-in function)


      	blockchain.scripthash.subscribe() (built-in function)


      	blockchain.scripthash.unsubscribe() (built-in function)


      	blockchain.scripthash.utxos() (built-in function)


      	blockchain.transaction.broadcast() (built-in function)


      	blockchain.transaction.get() (built-in function)


      	blockchain.transaction.get_merkle() (built-in function)


      	blockchain.transaction.id_from_pos() (built-in function)


      	blockchain.utxo.get_address() (built-in function)


      	blockchain_.scripthash.subscribe() (built-in function)


      	blockchain_.transaction.get() (built-in function)


  





C


  	
      	CACHE_MB


      	COIN, [1]


  

  	
      	COST_HARD_LIMIT, [1], [2]


      	COST_SOFT_LIMIT, [1], [2]


  





D


  	
      	DAEMON_URL, [1]


      	DB_CACHE, [1]


  

  	
      	DB_DIRECTORY


      	DONATION_ADDRESS


  





E


  	
      	
    environment variable

      
        	ALLOW_ROOT


        	ANON_LOGS, [1]


        	BANDWIDTH_UNIT_COST, [1]


        	BANNER_FILE, [1]


        	BLACKLIST_URL


        	CACHE_MB, [1]


        	COIN, [1], [2]


        	COST_HARD_LIMIT, [1], [2], [3]


        	COST_SOFT_LIMIT, [1], [2], [3]


        	DAEMON_URL, [1], [2]


        	DB_CACHE, [1]


        	DB_DIRECTORY, [1]


        	DB_ENGINE


        	DONATION_ADDRESS, [1]


        	DROP_CLIENT


        	ELECTRUMX


        	EVENT_LOOP_POLICY


        	FORCE_PROXY


        	INITIAL_CONCURRENT, [1], [2], [3]


        	LOG_FORMAT


        	LOG_LEVEL, [1]


        	LOG_SESSIONS


        	MAX_SEND, [1], [2]


        	MAX_SESSIONS


        	NET, [1], [2], [3]


        	PEER_ANNOUNCE


        	PEER_DISCOVERY


        	REORG_LIMIT


        	REPORT_SERVICES, [1], [2], [3], [4], [5], [6]


        	REQUEST_SLEEP, [1], [2], [3]


        	REQUEST_TIMEOUT, [1]


        	RPC_PORT


        	SERVICES, [1], [2], [3], [4], [5]


        	SESSION_TIMEOUT


        	SSL_CERTFILE, [1], [2]


        	SSL_KEYFILE, [1], [2]


        	SSL_PORT


        	TOR_BANNER_FILE


        	TOR_PROXY_HOST


        	TOR_PROXY_PORT


        	USERNAME


      


  





I


  	
      	INITIAL_CONCURRENT, [1], [2]


  





L


  	
      	LOG_LEVEL


  





M


  	
      	masternode.announce.broadcast() (built-in function)


      	masternode.list() (built-in function)


      	masternode.subscribe() (built-in function)


  

  	
      	MAX_SEND, [1]


      	mempool.changes() (built-in function)


      	mempool.get_fee_histogram() (built-in function)


  





N


  	
      	NET, [1], [2]


  





P


  	
      	protx.diff() (built-in function)


  

  	
      	protx.info() (built-in function)


  





R


  	
      	REPORT_SERVICES, [1], [2], [3], [4], [5]


      	REQUEST_SLEEP, [1], [2]


  

  	
      	REQUEST_TIMEOUT


      	RPC_PORT


  





S


  	
      	server.add_peer() (built-in function)


      	server.banner() (built-in function)


      	server.donation_address() (built-in function)


      	server.features() (built-in function)


      	server.peers.subscribe() (built-in function)


  

  	
      	server.ping() (built-in function)


      	server.version() (built-in function)


      	SERVICES, [1], [2], [3], [4]


      	SSL_CERTFILE, [1]


      	SSL_KEYFILE, [1]


      	SSL_PORT


  







          

      

      

    

  _static/up-pressed.png





_static/up.png





_images/pub.png
Client Connections

LocalRPC

ElectrumX

ElectrumX

ElectrumX

ElectrumX

Database
File System
Block
DB Processor
Prefetcher
Controller
IRC
Daemon

Lo 3






_static/ajax-loader.gif





nav.xhtml

    
      Table of Contents


      
        		
          ElectrumX
        


        		
          Features
        


        		
          Implementation
        


        		
          Roadmap
        


        		
          ChangeLog
          
            		
              Version 1.15.0 (27 May 2020)
            


            		
              Version 1.14.0 (19 Jan 2020)
            


            		
              Version 1.13.0 (26 Sep 2019)
            


            		
              Version 1.12.0 (13 May 2019)
            


            		
              Version 1.11.0 (18 Apr 2019)
            


            		
              Version 1.10.1 (13 Apr 2019)
            


            		
              Version 1.10.0 (15 Mar 2019)
            


            		
              Version 1.9.5 (08 Feb 2019)
            


            		
              Version 1.9.4 (07 Feb 2019)
            


            		
              Version 1.9.3 (05 Feb 2019)
            


            		
              Version 1.9.2 (03 Feb 2019)
            


            		
              Version 1.9.1 (11 Jan 2019)
            


            		
              Version 1.9.0 (10 Jan 2019)
            


          


        


        		
          HOWTO
          
            		
              Prerequisites
            


            		
              Database Engine
            


            		
              Running
              
                		
                  Process limits
                


                		
                  Using daemontools
                


                		
                  Using systemd
                


                		
                  Installing on Raspberry Pi 3
                


              


            


            		
              Sync Progress
            


            		
              Terminating ElectrumX
            


            		
              Understanding the Logs
            


            		
              Creating a self-signed SSL certificate
            


            		
              Running on a privileged port
            


          


        


        		
          Environment Variables
          
            		
              Required
            


            		
              For the run script
            


            		
              Services
            


            		
              Miscellaneous
            


            		
              Resource Usage Limits
            


            		
              Peer Discovery
            


            		
              Cache
            


          


        


        		
          Electrum Protocol
          
            		
              Protocol Basics
              
                		
                  Message Stream
                


                		
                  Notifications
                


                		
                  Version Negotiation
                


                		
                  Script Hashes
                


                		
                  Status
                


                		
                  Block Headers
                


              


            


            		
              Protocol Methods
              
                		
                  blockchain.block.header
                


                		
                  blockchain.block.headers
                


                		
                  blockchain.estimatefee
                


                		
                  blockchain.headers.subscribe
                


                		
                  blockchain.relayfee
                


                		
                  blockchain.scripthash.get_balance
                


                		
                  blockchain.scripthash.get_history
                


                		
                  blockchain.scripthash.get_mempool
                


                		
                  blockchain.scripthash.listunspent
                


                		
                  blockchain.scripthash.subscribe
                


                		
                  blockchain.scripthash.unsubscribe
                


                		
                  blockchain.transaction.broadcast
                


                		
                  blockchain.transaction.get
                


                		
                  blockchain.transaction.get_merkle
                


                		
                  blockchain.transaction.id_from_pos
                


                		
                  mempool.get_fee_histogram
                


                		
                  server.add_peer
                


                		
                  server.banner
                


                		
                  server.donation_address
                


                		
                  server.features
                


                		
                  server.peers.subscribe
                


                		
                  server.ping
                


                		
                  server.version
                


                		
                  Masternode methods (Dash and compatible coins)
                


                		
                  masternode.announce.broadcast
                


                		
                  masternode.subscribe
                


                		
                  masternode.list
                


                		
                  ProTx methods (Dash DIP3)
                


                		
                  protx.diff
                


                		
                  protx.info
                


              


            


            		
              Protocol Changes
              
                		
                  Version 1.0
                


                		
                  Version 1.1
                


                		
                  Version 1.2
                


                		
                  Version 1.3
                


                		
                  Version 1.4
                


                		
                  Version 1.4.1
                


                		
                  Version 1.4.1
                


              


            


            		
              Removed Protocol Methods
              
                		
                  Deserialized Headers
                


              


            


            		
              Protocol Ideas
              
                		
                  blockchain.scripthash.subscribe
                


                		
                  blockchain.scripthash.history
                


                		
                  blockchain.scripthash.utxos
                


                		
                  blockchain.transaction.get
                


                		
                  mempool.changes
                


              


            


          


        


        		
          Peer Discovery
          
            		
              Hard-coded Peers
            


            		
              server.peers.subscribe
            


            		
              Maintaining the Peer Database
            


            		
              server.features
            


            		
              server.add_peer
            


            		
              Notes for Implementors
            


          


        


        		
          RPC Interface
          
            		
              add_peer
            


            		
              daemon_url
            


            		
              disconnect
            


            		
              getinfo
            


            		
              groups
            


            		
              log
            


            		
              peers
            


            		
              query
            


            		
              reorg
            


            		
              sessions
            


            		
              stop
            


          


        


        		
          Architecture
          
            		
              Env
            


            		
              Controller
            


            		
              LocalRPC
            


            		
              ElectrumX
            


            		
              Daemon
            


            		
              Block Processor
            


            		
              Prefetcher
            


            		
              Mempool
            


            		
              Database
            


          


        


        		
          Authors
        


      


    
  

_static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/file.png





_static/minus.png





_static/down.png





_static/plus.png





